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BACKGROUND
Pyrazinamide (PZA) is a critical component of first-line drug combination therapy for 
Mycobacterium tuberculosis complex (MTBC) including both susceptible and multi-drug resistant 
tuberculosis (MDR TB). Inclusion of PZA has shortened the previous 9–12 month chemotherapy 
regimen to 6 months.1 PZA has also become an essential part of MDR TB treatment regimens 
that include novel compounds now clinically available, such as bedaquiline.2,3 PZA is inactive 
against organisms in the growth phase during standard culture conditions at neutral pH. PZA has 
a sterilizing effect due to its significant activity against non-replicating “persister” organisms or 
semi-dormant slowly replicating bacilli at acid pH conditions (pH 5.5), killing bacilli that are not 
eliminated by other TB drugs, such as those found in acidic regions of acute inflammation.4–8

The mechanism of action of PZA and resistance to PZA by Mycobacterium tuberculosis (MTBC) 
is not well understood. Pyrazinamide is a pro-drug which requires conversion to its active form 
of pyrazinoic acid (POA) by MTBC. Pyrazinamide enters mycobacteria by passive diffusion and is 
then transformed in the cytoplasm by a nicotinamidase that has pyrizinamidase (PZase) activity, 
encoded by the pncA gene of MTBC. Pyrazinoic acid accumulates in the cytoplasm and is actively 
expelled by a putative efflux pump. Outside of the bacilli, POA is protonated and then re-enters 
the organism and release of the protons occurs, resulting in an increasingly acidic cytoplasm 
and the accumulation of POA. This disrupts membrane permeability and transport, resulting 
in cellular damage.9,10 Recently, the ribosomal protein S1 (translated from the rpsA gene) was 
identified as a target of POA, which interferes with trans-translation activity, which is required for 
efficient protein synthesis.11 

The primary mechanism of PZA resistance is due to mutations in the pncA gene resulting in loss 
of PZase activity, thus preventing conversion of PZA to POA.12–15 In particular, mutations in specific 
amino acid locations in the protein affecting catalytic sites of the PZase enzyme and Fe2+ ion 
binding site cause loss of PZase activity and are associated with MTBC PZA resistance.16–18 

Molecular analysis of the coding region of the pncA gene and promoter region from several  
studies has identified mutations in 46–97% of phenotypically PZA resistant isolates. It is possible 
that some of the phenotypically resistant isolates without identified mutations in the pncA gene 
or promoter region may actually be susceptible due to issues with phenotypic drug susceptibility 
testing (DST) [see Practical Laboratory Issues]. Mutations in the pncA gene are diverse and 
widely distributed throughout the gene, and a variety of mutations have been correlated with high-
level resistance. Miotto et al. assessed pncA sequence variations in 1,950 clinical isolates, and 
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correlated them with phenotype, PZase activity, structural and phylogenetic data. Using these 
data, mutations were classified according to probability of predicting resistance.19 Whitfield et al. 
analyzed pncA mutations that were not found to confer PZA resistance at the 100 ug/mL critical 
concentration in the MGIT 960 system (Becton-Dickinson, Sparks, MD). They observed that most 
of the pncA polymorphisms associated with susceptible isolates identified in the study had a PZA 
MIC between 50 and 100 ug/mL, i.e. just below the critical concentration.20 A recently published 
systematic review has summarized published mutations associated with PZA resistance.21 Loss of 
PZase activity does not appear to adversely affect organism viability; indeed, Aono et al. recently 
reported on the detection of three strains completely lacking the pncA gene; these strains were 
highly resistant to PZA, with minimum inhibitory concentrations (MIC) >1600 mg/L.22 Additional 
evidence is required (e.g. MIC testing, other functional and clinical studies) to determine if the new 
mutation(s) truly cause phenotypic PZA resistance.13,14,19–21,23–27

Not all pncA mutations result in detectable PZA resistance by current phenotypic DST,20 and 
some PZA resistant isolates may not have any pncA or promoter region mutations (pncA-WT). 
Resistance may be due to other mechanisms such as efflux of POA, which is dependent on level 
of PZase activity, intracellular PZase concentrations, and POA efflux pump efficiency; altered PZA 
uptake; impaired POA binding to drug targets, and pncA gene expression.9,11,28,29 Mycobacterium 
canettii, a potential precursor to M. tuberculosis, is naturally resistant to PZA and only contains 
a silent nucleotide substitution A138G (Ala46Ala) in pncA and no other mutations, suggesting 
resistance is due to other mechanisms.28,30

Other potential gene targets have been recently identified such as rpsA, and panD. To date, a few 
evaluations of these targets with pncA-WT phenotypically PZA resistant isolates have determined 
that while there may be a role of these gene targets in MTBC PZA resistance, it is not fully 
understood, and may only account for a small proportion of isolates.10,23,26,30–33 

Pyrazinamide monoresistance is often an indicator of Mycobacterium bovis or Mycobacterium 
bovis BCG, which are naturally resistant to PZA. If pncA sequencing is performed, the mutation 
at nucleotide position 169, encoding for amino acid substitution of histidine to aspartic acid at 
position 57 in PZase (His57Asp) is observed.15,28,34 

PRACTICAL LABORATORY ISSUES
Pyrazinamide Drug Susceptibility Testing and Test Methods
The current Clinical Laboratory Standards Institute (CLSI) considers the BACTEC 460 
radiometric broth method as the reference method.35 However, the BACTEC 460 has since 
been discontinued, and is no longer available. As an alternate, CLSI and the Manual of Clinical 
Microbiology35,36 states that PZA DST may be performed using the commercial nonradiometric 
rapid broth systems, but that repeat testing to confirm initial resistant results should be 
considered. Two broth-based methods are currently FDA-cleared for use: the VersaTREK MYCO 
TB system (TREK Diagnostics) and the BACTEC MGIT 960 (Becton-Dickinson). 

The most commonly utilized system, the MGIT 960, has been more widely evaluated than 
the VersaTREK MYCO TB.37 An evaluation of the MGIT 960 system for PZA in comparison to 
the BACTEC 460 radiometric system found the MGIT 960 to be comparable to the BT 460.38 
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However, since the introduction of the MGIT 960, several issues with susceptibility testing 
have been noted, in particular, difficulties with reproducibility, particularly with PZA.23,39–41

The MGIT 960 utilizes an acidified pH (approximately 5.9), Middlebrook 7H9 broth modified 
with growth supplement (bovine albumin, dextrose and polyoxyethylene stearate) and a 
modified proportion method, with the critical concentration of 100 mg/L of PZA. The system 
has continuous automated monitoring in which growth is detected using a non-radiometric 
method that detects consumption of oxygen by a fluorescence indicator. 

The VersaTREK MYCO TB system utilizes an acidified medium (Middlebrook 7H9 based, 
pH 5.9 – 6.0) with growth supplement (MYCO GS) and a critical concentration of 300 
mg/L of PZA. Pressure changes within the culture bottle are used to detect growth, and 
these pressure changes are presented as a growth curve; growth is demonstrated by a gas 
consumption curve (as MTBC grows it consumes oxygen) downward. The VersaTREK system 
has continuous automated monitoring.

A microtitre plate broth dilution system, Sensititre (TREK Diagnostic Systems, Cleveland, 
OH) has been developed for first and second line antituberculosis drugs. However PZA DST 
requires a more acidic medium; therefore PZA is not in the panel of available drugs.

Other methods that have not been cleared by the FDA have been developed and assessed 
for PZA. These include the resazurin microtitre assay (REMA), colorimetric nitrate reductase 
assay, and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT reduction 
test).26,42–46 The REMA and MTT assays detect bacterial growth in a microtitre well format 
through redox reactions. The nitrate reduction assay also requires growth in liquid or solid 
media. In the US, it is not known if any laboratories are employing these methods for PZA DST 
(D. Warshauer, personal communication, August 4, 2014). 

The PZase test, which detects the production of pyrazinamidase by the organism and it’s 
ability to convert PZA to POA (not FDA-cleared), requires a sufficient inoculum with a large 
number of organisms in order to detect PZase activity. The assay can be misinterpreted 
resulting in false resistance. Some isolates with PZase activity have been determined to 
be PZA resistant (resistance other than a mutation affecting PZase). Pyrizinamidase assay 
sensitivity has been reported to vary between 79 – 96%.12,25,26,40,47 The PZase test detects 
deamidation of PZA to pyrazinoic acid and ammonia through formation of a pink band in the 
subsurface agar that diffuses into the medium indicating enzymatic hydrolysis of PZA to free 
pyrazinoic acid. Mestdagh et al. found that 39/42 PZase positive isolates were determined 
to be PZA susceptible by the BACTEC 460, confirming other findings that not all PZA resistant 
isolates are PZase negative.48 They concluded that negative PZase results could be used to 
determine PZA resistance, but care should be taken in the interpretation of PZase positive 
results.48–50 Further studies should be undertaken and are needed to better establish the 
relationship between phenotypic DST and PZase testing.
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Molecular methods include pncA gene sequencing to identify mutations. As described earlier, 
some pncA mutations have a high association with phenotypic resistance, but not all.19–21 
Line Probe Assay (LiPA) has been developed for the detection of mutations within the genetic 
loci associated with resistance to pyrazinamide (pncA), but is not FDA cleared for use.51

Reproducibility of Susceptibility Testing for PZA
In-vitro testing of PZA is difficult and generally it is unreliable. The MGIT 960 has known 
issues with specificity (false resistance), and even when repeat testing is performed (as 
recommended by CLSI M24-2A),35 false resistance can still occur.40,52,53 The bactericidal 
activity of PZA is optimal only in an acid environment (pH 5.5 – 5.6), and is almost inactive 
at neutral pH. Additionally, the acid environment itself inhibits the growth of MTBC isolates. 
Therefore, the MIC of PZA is pH dependent and has been shown to increase with increasing 
pH. It has been demonstrated that at a pH of 5.5, the MIC was 50 mg/L, whereas at a pH of 
5.8 the MIC was 100 mg/L, and at a pH of 6.1, the MIC was 200 mg/mL due to enhanced 
viability in more alkaline media.6,54,55 The drug concentration used for PZA testing in the 
liquid broth systems (100 mg/L) (MGIT960) is greater than that used for conventional solid 
media DST (pH 5.5) as well as the expected concentration in serum and tissue, in order to 
compensate for the higher pH.6 

The reproducibility of PZA phenotypic DST is particularly affected by the size of the test 
inoculum. A large inoculum (107 cells/ml to 108 cells/ml) has been shown to increase the 
pH to 7, inactivating PZA and resulting in false resistance. Only a small increase in pH (less 
than 0.3 units) was found with an inoculum containing 106 cells/mL, the most commonly 
used inoculum for DST. Phenotypic DST should be performed using fresh subcultures, as 
older culture material may contain metabolically inactive organisms, and appear falsely 
susceptible. The presence of bovine serum albumin in media has been found to increase 
pH of acidic media and binds to POA, which may result in false resistance.8,55,56 Aono 
et. Al. showed that phenotypic DST results may reflect a mixture of strains with differing 
properties.22 Additionally, if the inoculum is too low, organisms might not grow well in the low 
pH medium and may appear to be falsely susceptible. This should be readily identified by 
poor growth in the control tube as well as the PZA tube, rendering the result invalid. 

Proficiency Testing 
Proficiency testing is not readily available and is not included as one of the World Health 
Organization Network of Supranational Reference Laboratories yearly proficiency test panels. 
In the US, the College of American Pathologists provides proficiency testing for PZA and other 
antituberculosis drugs; however, their program provides only two challenge isolates per year 
and includes only pan-susceptible strains. The Centers for Disease Control and Prevention 
(CDC) offers a performance evaluation program for MTBC DST twice a year that includes 
five isolates that may be pan-susceptible or resistant to various drugs. The CDC program is 
not a formal, graded proficiency testing program, but is an excellent self-assessment tool for 
laboratories performing MTBC DST and an opportunity to compare results to those obtained 
by other participants using the same methods.
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There is a lack of quality data upon which to base development and implementation priorities 
for new drug treatment regimens that include PZA.60,61 Hoffner et al. identified significant 
differences with PZA DST between experienced laboratories in a proficiency testing survey 
of five laboratories and a reference laboratory in Sweden. The most common error observed 
was false resistance.60 False resistant PZA DST results were observed for two PZA susceptible 
MTBC strains in the 2012 CDC model performance evaluation program (MPEP) for MTBC 
drug susceptibility testing. For one susceptible strain 33 of 70 (47%) laboratories reported 
resistance and for the second strain, 16 of 74 (22%) laboratories reported resistance.62 This 
false resistance with the MGIT 960 system continued to be seen in the 2013 program. In 
the National Microbiology Laboratory 2013 Proficiency Testing Program administered by the 
Canadian National Reference Centre for Mycobacteriology (National Microbiology Laboratory, 
Public Health Agency of Canada), one out of the five participating laboratories reported false 
susceptible and false resistance for PZA DST (F. Jamieson, personal communication). 

Approaches to Improving Reproducibility and Specificity Using the MGIT 960

PZA DST Inoculum:
Lack of standardization of test inoculum significantly affects results. The manufacturer’s 
recommended method for testing using MGIT 960 likely results in differences in the 
amount of organism used in testing. The concentration of MTBC in the MGIT 960 
compared to the Bactec 460 is greater than 2.5 times, and there is variation in the 
concentration of the inoculum used in the MGIT 960, depending on the day of test set-up. 
If a much larger inoculum or non-homogenous inoculum (clumps) is used for testing, there 
is a high potential for false resistance.40,52,60

In order to ensure a comparable, uniform inoculum for each test, it has been suggested 
that the inoculum preparation be “standardized” to approximately 106 CFU/mL. This can 
be achieved by allowing the test inoculum to settle after removal of culture material from 

Shaded cells refer to non-phenotypic DST methods
* Solid media proportion methods (Lowenstein-Jensen or 7H10 agar based) have been used or proposed, but are slow and labor-intensive,  

and not recommended for PZA DST 35,54,57–59

** not FDA cleared

Culture-based Method Determination of Resistance

FDA Cleared
MGIT 960 Growth in the presence of PZA at the critical 

concentration of 100 mg/L

VersaTREK MYCO TB Growth in the presence of PZA at the critical 
concentration of 300 mg/L

Research Use 
Only (RUO) PZase** Lack of PZase activity

Molecular-based Method Determination of Resistance

Research Use 
Only (RUO) Sanger Sequencing

Detection of mutations within the genetic loci and 
promoter region associated with resistance to 
pyrazinamide (pncA).

Table 1.  Culture-based and Molecular Drug Susceptibility Testing Methods



ASSOCIATION OF PUBLIC HEALTH LABORATORIES 6 Issues in MTBC Drug Susceptibility Testing: PZA

the primary MGIT 960 tube, removing supernatant and then diluting to a 0.5 McFarland 
standard.63 In a study by Piersimoni et al., they recommend using a reduced inoculum 
of 0.25 mL from the positive MGIT tube instead of 0.5 mL, as is recommended by the 
manufacturer, for repeat testing. They found improved agreement with the BACTEC 460, 
used as the gold standard in this study.52 There are very few data to determine if this is an 
issue with the VersaTREK system.37

Use of more than one test concentration or determination of MICs:
Due to normal variation in set-up, the present critical concentration used for PZA (100 mg/L) 
may result in discrepancies for isolates that have a PZA MIC close to the critical concentration. 
The determination of an appropriate clinical breakpoint or MIC has to rely on using a 
distribution of MICs from wild-type MTBC strains, as clinical outcome data for treatment with 
PZA alone is not obtainable. The definition of the critical concentration for PZA categorizes up to 
10% of wild-type MTBC strains as drug resistant. The World Health Organization has stated that 
the critical concentration defining resistance is often very close to the MIC required to achieve 
antimycobacterial activity, increasing the probability of misclassification of susceptibility or 
resistance and leading to poor reproducibility of DST results.64

Varying interpretations of results have been suggested, including a cutoff of 300 mg/L, a 
range (100, 300 and 900 corresponding to susceptible, intermediate and resistant) from 
radiometric data, or setting the critical concentration at 200 mg/L based on the theoretical 
MIC at a pH of 6.0.55,56 Alternatively, Werngren et al. suggested interpreting MICs of less 
than 64 mg/L as susceptible, less than 128 mg/L as intermediate and greater than 128 
mg/L as resistant based on a study of phenotypic resistance and pncA gene mutations 
in PZA resistant MTBC.65 There is a need to further characterize the phenotype of isolates 
with specific pncA mutations and their correlation to MICs.20,24 Aono et al. recently reported 
the detection of sub-populations within strains that exhibited differing characteristics 
affecting initial PZA DST results. As noted earlier, they also identified three isolates where 
the pncA gene was deleted, with phenotypic resistance to PZA.22

IMPACT ON CLINICAL OUTCOMES
Pyrazinamide is a critical component of first-line drug combination therapy for tuberculosis for both 
susceptible and multi-drug resistant tuberculosis (MDR TB). Inclusion of PZA in the first two months 
of treatment has shortened the previous 9–12 month chemotherapy regimen to six months.1 

World Health Organization guidelines have determined that PZA should be included in the 
intensive phase of the treatment regimens for MDR TB.1,66,67 Pyrazinamide is also considered 
an important component of shorter, new drug regimens, as well as in combination with novel 
antituberculosis drugs recently developed, such as PA-824, a nitroimidazo-oxazine, with 
moxifloxacin and PZA, and bedaquiline.2,3

As PZA is typically used for a short amount of time (i.e. the first two months of the six month 
standard US-CDC treatment regimen), it is important that the DST results are provided rapidly, 
accurately, and reliably. False resistance may result in unnecessarily prolonged therapy. 
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The lack of reliable PZA resistance data hampers the efforts for determining priorities of new 
tuberculosis treatment regimens and determining the effectiveness of drug treatments using 
novel drugs.

AREAS OF ONGOING RESEARCH
pncA and other gene target molecular assays:
Mutations of the pncA gene have been identified along the entire length of the gene, as well 
as in the putative upstream regulatory region, for approximately 700 base pairs. There are 
a large number of pncA mutations that have been published, but there are no predominant 
mutations. Some have been identified as always being associated with resistance to PZA, but 
more studies are needed to determine the phenotype of pncA mutations.19–21,24 

The use of pncA sequencing for PZA susceptibility was suggested by Dormandy et al. in an 
analysis of MDR TB isolates which appeared phenotypically susceptible by BACTEC 460 
but harbored a specific pncA mutation with increased MICs.68 Simons, et al. have proposed 
incorporating pncA sequencing with phenotypic DST as part of the clinical testing algorithm. 
They found a sensitivity of 73% for non-synonymous pncA mutations and a specificity of 100%, 
using an algorithm of pncA gene sequence analysis in all isolates found to be PZA resistance by 
MGIT 960.53 A systematic review and meta-analysis of pyrazinamide drug susceptibility testing 
found that pncA gene sequencing could be used to potentially rule out PZA resistance in a low 
prevalence, non-MDR TB setting. Furthermore, in high prevalence settings pncA mutations 
may predict true PZA resistance.25 Simons, et al. found that pncA sequence analysis with rpoB 
mutation analysis for the detection of PZA resistant MDR-TB had a sensitivity and specificity of 
96.8% and 94.2% respectively, with a positive predictive value of 90.9% and negative predictive 
value of 98.0%.21 Most recently, a large systematic review evaluated the utility of mutations in 
PZase (pncA) and the putative upstream regulatory (promoter) region for pncA for the molecular 
diagnosis of PZA resistance in MTBC. Of 2760 PZA resistant MTBC isolates, 83% had at least 
one mutation in pncA and/or the upstream regulatory region, and of 3329 PZA sensitive 
isolates, 9% had a mutation in pncA. Sensitivity and specificity based on mutations from 
isolates with phenotypic resistance determined by either the BACTEC 460 or MGIT 960 was 
found to be 80% and 91%, respectively.21 Similarly, Miotto et al. found almost 85% of genetic 
variants identified in the pncA gene were associated with phenotypic resistance to PZA and they 
were able to classify them as “high-confidence” resistance mutations.19 Another approach is the 
detection of pncA wild-type gene, to rule-out resistance. However, silent mutations preventing 
hybridization and detection would present a concern for reporting false resistance.13

A functional approach has been taken by Li et al. who developed an assay that employs a 
rapid colorimetric detection of PCR-based in vitro-synthesized pyrazinamidase, based on the 
pncA gene sequence of the isolate. This assay is useful for PZA resistance that is due to pncA 
mutations, but cannot detect resistance due to other mechanisms.46,69

Other gene targets identified as possible contributors to PZA resistance include rpsA and 
panD. The rpsA gene encodes ribosomal protein S1 (RpsA), a target of PZA. RpsA is involved 
in trans-translation, a component of the degradation process of potentially toxic protein 
products formed in stressed bacteria. This function is important for persister survival.10,11,33 
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The panD gene, which encodes aspartate alpha-decarboxylase has also been identified as 
a potential target by whole genome sequencing. It has been shown to be critical for survival 
and persistence of M. tuberculosis in vivo, and is involved in the pantothenate and Coenzyme 
A (CoA) synthesis pathway, required for cellular metabolism. It is hypothesized that PZA may 
inhibit pantothenate and CoA synthesis, interfering with important metabolic functions of 
the cell. Whole genome sequencing approaches combined with expression and functional 
genomics may provide additional gene targets involved in PZA resistance.10 

Critical concentration revision and determination of breakpoints:
Research challenging the current critical concentration testing protocols, and the development 
of new testing breakpoints is on-going. Further determination of the true distribution of MICs in 
wild-type MTBC and the relationship to clinical outcomes is needed.64,65 

Assessment of POA:
Studies looking at the active component of PZA (POA) and how it acts in the cell have 
identified the POA efflux rate as a predictor of resistance. Assays that could rapidly detect the 
POA levels are in development.9,29

GUIDANCE
Laboratories should consider the following:

• Use fresh cultures for preparation of test inoculum for phenotypic broth based DST
• Ensure a standard inoculum for DST; Laboratories may consider validating method for 

inoculum preparation40,63

• For a MGIT 960 positive MTBC culture inoculated to the PZA test consider the following if 
using the MGIT 960 system (based on options in the package insert):

1. Use a day 1 culture rather than day 2 

OR 

2. Use a day 3 culture diluted 1:5, rather than day 4 or 5 (K. Jost, personal communication, 
August 4, 2014)

• Repeat DST if resistant, using a day 3 culture
• All mono-resistant PZA isolates should be investigated and identified to the species level to 

determine if the isolate is M. bovis or M. bovis BCG (re-test using a day 3 culture)
• Consider repeating resistant results with a reduced inoculum40,52

• Test all phenotypic resistant isolates by pncA sequence analysis
 ○ Consider repeat testing at different breakpoints for pncA isolates with mutations not 

previously recognized.
 ○ Consider any isolates with non-synonymous pncA gene mutations as “PZA resistant”
 ○ Repeat phenotypic DST for any isolates with synonymous pncA mutations or wild type (WT)53
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