The Association of Public Health Laboratories (APHL) is a national non-profit organization dedicated to working with members to strengthen governmental laboratories that perform testing of public health significance. By promoting effective programs and public policy, APHL strives to provide member laboratories with the resources and infrastructure needed to protect the health of US residents and to prevent and control disease globally.
TABLE OF CONTENTS

Background and Purpose .. 4

Method ... 5

Results .. 6-22

Summary of Major Findings ...23-24

Resources... 25

Glossary of Terms... 26

References...27

Appendix ..28-29

Acknowledgements.. 30
BACKGROUND AND PURPOSE

Diagnosis of tuberculosis (TB) in the United States involves a network of private and public laboratories with different levels of service. As a result, specimens from a single patient may be referred to several laboratories for more complex tests including drug susceptibility testing. Without excellent coordination and communication between public and private sector laboratories, diagnosis and treatment of TB patients may be delayed.

As the number of TB cases in the US has fallen, the number of laboratories offering the full menu of TB diagnostic services has eroded. In 2002, the Association of Public Health Laboratories (APHL) and the US Centers for Disease Control and Prevention (CDC) convened the Task Force on the Future of TB Laboratory Services to develop recommendations to assure continued availability of high-quality, cost-effective TB laboratory services. The Task Force formulated three principle benchmarks of which one was a comprehensive assessment of available TB laboratory services in the public and private sector to fill gaps in knowledge about the capabilities and capacities of US laboratories and the structure of jurisdictional laboratory networks.

In response to that recommendation, APHL and CDC developed and launched the National TB Laboratory Services Survey in 2010. The purpose of the survey was to assess the overall ability of commercial, clinical, and public health laboratories in the United States to provide quality TB diagnostic services. The results will be used to identify gaps in the capabilities and capacities of TB testing services and identify opportunities to strengthen laboratory systems.
The National TB Laboratory Services Survey was developed by an APHL-led workgroup that consisted of representatives from CDC’s Division of Tuberculosis Elimination (DTBE) and public health laboratories. The final product was reviewed by a larger workgroup that included representatives from clinical and commercial laboratories.

The 118-question survey was launched September 7, 2010, and officially closed in February 2011. The questions were divided into 11 different categories, including: demographics; testing methodologies and volume; referral strategies; specimen collection, handling and transport; turnaround-times; reporting practices; laboratory staff and training; safety practices; proficiency testing and quality assurance; public health and epidemiology; and planning for the future.

The survey was distributed electronically to 1,444 clinical, commercial, public health, and Department of Defense laboratories via MRInterview, a web-based survey instrument. The survey participants were identified based on a list of laboratories enrolled in a mycobacteriology proficiency testing program in 2009. The list was quality-checked by APHL, and points of contact were identified for each laboratory. The point of contact for each laboratory received a link to an electronic version of the survey as well as a PDF file on September 7, 2010. Reminders were sent out on September 14 and twice more, biweekly. Of the 1,444 laboratories receiving the survey, 656 (45%) responded. Of those that responded, 580 (88%) performed some level of TB service in-house and were included in the analysis for this first of a series of issue briefs describing the survey results.
RESULTS

Figure 1: Respondents by Laboratory Type (n=580)

Table 1

<table>
<thead>
<tr>
<th>In-house service performed</th>
<th>NO. OF LABORATORIES BY TYPE</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hospital-based Clinical</td>
<td>Commercial</td>
</tr>
<tr>
<td>AFB-smear Microscopy</td>
<td>466</td>
<td>23</td>
</tr>
<tr>
<td>AFB Culture</td>
<td>364</td>
<td>23</td>
</tr>
<tr>
<td>MTBC Identification</td>
<td>121</td>
<td>19</td>
</tr>
<tr>
<td>First-line DST</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>Second-line DST</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Direct Detection</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>IGRA</td>
<td>35</td>
<td>8</td>
</tr>
</tbody>
</table>
Results

Table 2

<table>
<thead>
<tr>
<th>No. of AFB smears processed per week</th>
<th>NO. OF LABORATORIES BY TYPE</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hospital-based Clinical</td>
<td>Commercial</td>
</tr>
<tr>
<td><5</td>
<td>93</td>
<td>0</td>
</tr>
<tr>
<td>6-14</td>
<td>115</td>
<td>0</td>
</tr>
<tr>
<td>15-25</td>
<td>80</td>
<td>3</td>
</tr>
<tr>
<td>26-50</td>
<td>87</td>
<td>4</td>
</tr>
<tr>
<td>51-100</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>>100</td>
<td>28</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>463</td>
<td>23</td>
</tr>
</tbody>
</table>

Figure 2: Primary AFB Staining Method (n=575)
Results

Figure 3: Primary Direct Detection Method of MTBC from Clinical Specimen (n=85)

- Gen-Probe MTD: 56 (66%)
- Cepheid GeneXpert: 2 (2%)
- Innogenetics INNOLiPA: 4 (5%)
- Direct HPLC: 13 (15%)
- LDT real-time PCR: 4 (5%)
- LDT conventional PCR: 5 (6%)
- Other: \ldots (Other%)

Figure 4: Primary Broth-based Culture System (n=466)

- Bactec 460 TB: 162 (35%)
- Versa TREK: 15 (3%)
- MB/BacT-Alert: 14 (3%)
- BACTEC MGIT-960: 14 (3%)
- Manual MGIT: 72 (15%)
- Manual 7H9: 12 (3%)
- Other: 11 (2%)
- Exclusive Use of non-broth based culture: 33 (7%)
- Other: \ldots (Other%)
Table 3

<table>
<thead>
<tr>
<th>No. of AFB cultures inoculated per week</th>
<th>NO. OF LABORATORIES BY TYPE</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hospital-based Clinical</td>
<td>29 (6.3)</td>
</tr>
<tr>
<td></td>
<td>Commercial</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>State Public Health</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Local Public Health</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>0 (0)</td>
</tr>
<tr>
<td><5</td>
<td>29</td>
<td>52 (11.2)</td>
</tr>
<tr>
<td>5-9</td>
<td>46</td>
<td>62 (13.4)</td>
</tr>
<tr>
<td>10-15</td>
<td>54</td>
<td>42 (9.1)</td>
</tr>
<tr>
<td>16-20</td>
<td>34</td>
<td>66 (14.2)</td>
</tr>
<tr>
<td>21-30</td>
<td>52</td>
<td>44 (9.5)</td>
</tr>
<tr>
<td>31-40</td>
<td>34</td>
<td>112 (24.1)</td>
</tr>
<tr>
<td>41-100</td>
<td>81</td>
<td>43 (9.3)</td>
</tr>
<tr>
<td>101-250</td>
<td>23</td>
<td>11 (2.4)</td>
</tr>
<tr>
<td>251-500</td>
<td>3</td>
<td>0 (0)</td>
</tr>
<tr>
<td>>500</td>
<td>0</td>
<td>3 (0.7)</td>
</tr>
<tr>
<td>Total</td>
<td>356</td>
<td>464</td>
</tr>
</tbody>
</table>

Figure 5: Primary Method for ID of MTBC from Culture (n=213)
Results

Figure 6: Culture Positivity for MTBC (n=212)

![Bar chart showing the distribution of MTBC positivity among laboratories.](chart1)

Figure 7: Culture Positivity for NTM (n=212)

![Bar chart showing the distribution of NTM positivity among laboratories.](chart2)
Results

Figure 8: Primary Method for First-line Drug Susceptibility Testing (n=91)

- 60 (66%) BACTEC MGIT 960
- 22 (24%) Versa TREK
- 3 (3%) BACTEC 460 TB
- 6 (7%) Agar Proportion

Figure 9: Average Volume of First-line DST Per Month (n=91)

- Local PHL
- State PHL
- Commercial
- Hospital-based clinical

Survey Summary Report 11
Table 4

<table>
<thead>
<tr>
<th>Availability of mol-DR for MTBC</th>
<th>NO. OF LABORATORIES BY TYPE</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hospital-based Clinical</td>
<td>Commercial</td>
</tr>
<tr>
<td>Performed In-house</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical specimens referred</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Culture isolates referred</td>
<td>83</td>
<td>3</td>
</tr>
<tr>
<td>Both clinical specimens and isolates referred</td>
<td>135</td>
<td>7</td>
</tr>
<tr>
<td>No availability of this service</td>
<td>128</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>445</td>
<td>23</td>
</tr>
</tbody>
</table>

Figure 10: Reference Services by Laboratory Type
Table 5

<table>
<thead>
<tr>
<th>Testing Service</th>
<th>NO. OF LABORATORIES BY TYPE REFERRING FOR SERVICES</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hospital-based Clinical</td>
<td>Commercial</td>
</tr>
<tr>
<td>AFB Culture</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>MTBC Identification</td>
<td>342</td>
<td>4</td>
</tr>
<tr>
<td>First-line DST</td>
<td>431</td>
<td>15</td>
</tr>
<tr>
<td>Second-line DST</td>
<td>453</td>
<td>21</td>
</tr>
<tr>
<td>Direct Detection</td>
<td>418</td>
<td>17</td>
</tr>
<tr>
<td>IGRA</td>
<td>314</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 11: Laboratories with ≥80% of AFB Smear Results Reported within 24 Hours of Specimen Receipt (n=329)
Figure 12: Laboratories with ≥80% of MTBC Direct Detection Results Reported within 48 and 72 hours of Specimen Receipt (n=98)*

*includes TAT for in-house and referred testing

Figure 13: Laboratories with ≥80% of MTBC ID within 14, 21 and 28 Days of Specimen Receipt (n=149)*

*includes TAT for in-house and referred testing
Results

Figure 14: Laboratories with ≥80% of First-line DST within 28 and 35 Days of Specimen Receipt (n=145)*

*includes TAT for in-house and referred testing

Figure 15: Maximum Specimen Transport Time Allowed (n=561)
Results

Figure 16: Barriers to Timely Transport of Specimens (n=310)

Figure 17: State Requirement for Submission of MTBC Isolate to Public Health Laboratory (n=548)
Figure 18: Laboratory Capability for Electronic Reporting (n=557)

Figure 19: Experienced Staff Shortages for Mycobacteriology within the Last Year
Results

Figure 20: Have Staff Shortages Resulted in a Decrease in Services or an Increase in Turnaround Times?

Figure 21: Experienced Obstacles Recruiting Qualified Staff for Testing

[Bar charts showing data across different categories and settings]
Results

Respondents could select up to three recruitment obstacles

Figure 22: Obstacles to Recruiting Qualified Staff

- **Other**: 6
- **Hiring Freeze**: 34
- **Difficulty in Hiring Process**: 15
- **State Licensing Requirement**: 5
- **Resistance to Work Needed Shifts**: 8
- **Resistance to Working with Mycobacteria**: 12
- **Salary**: 42
- **Lack of Certification**: 10
- **Shortages of MTs/CLSs**: 54
- **Lack of Professional Experience**: 65

Percent of Laboratories

Figure 23: Anticipate Change in Workload in Next Year (n=545)

- **Increase**: 65
- **Decrease**: 15
- **No Major Change**: 34
- **Unsure**: 6

Number of Laboratories

- **Other**: Other
- **Local Public Health**: Local Public Health
- **State Public Health**: State Public Health
- **Commercial**: Commercial
- **Hospital-based clinical**: Hospital-based clinical
Results

Figure 24: Service Consolidation as Reason for Change in Workload (n=114)

Figure 25: Plans to Add or Eliminate Mycobacteriology Laboratory Services
Results

Figure 26: Additional Services Under Consideration (n=545)

*Respondents could select multiple responses

Figure 27: Training Topics Most Relevant for those Performing Mycobacteriology Testing (n=552)

*Respondents could select multiple responses
Figure 28: Laboratories With Continuity of Operations Plan for TB Laboratory Services (n=538)
SUMMARY OF MAJOR FINDINGS

- Survey responses were obtained from 45% of all US laboratories enrolled in a mycobacteriology proficiency testing program in 2009.

- Of the 580 laboratories performing AFB-smear microscopy, 82% also performed AFB culture.

- Most laboratories performing culture refer isolates for MTBC identification, first and second-line DST, and direct detection.

- 81% of laboratories use a fluorescent stain as a primary staining method for AFB-smear microscopy, consistent with CDC recommendations (1, 2).

- 39% of laboratories perform fewer than 15 AFB smears per week. The current ATS and CDC recommendation specifies preparation and examination of at least 15 specimens per week for each microscopist to maintain proficiency (1).

- 15% of laboratories perform direct detection for rapid identification of MTBC from a clinical specimen. Of these, 55% were public health laboratories. Current CDC recommendations encourage the use of nucleic acid amplification testing on at least one respiratory specimen from each patient with signs and symptoms of pulmonary TB for whom a diagnosis of TB is being considered but has not yet been established, and for whom the test results would alter case management or TB control activities (3).

- Of those laboratories performing AFB culture, 40% inoculate fewer than 20 AFB cultures per week. To maintain proficiency in culture and identification of MTBC, it is recommended that laboratories process a minimum of 20 specimens per week (4).

- In 75% of laboratories performing identification in-house, 5% or less of mycobacterial cultures processed within the last year were positive for MTBC.

- In 72% of laboratories performing identification in-house, 4% or more of mycobacterial cultures processed within the last year were positive for nontuberculous mycobacteria.

- 42% of laboratories performing first-line DST perform testing for five or fewer MTBC isolates per month. The current APHL recommendation is referral if performing DST for less than 50 isolates per year (5).

- 72% of laboratories reported access, primarily through referral, for the molecular detection of mutations associated with drug resistance for MTBC.
• The majority of laboratories reported that greater than 80% of AFB-smear results are reported within 24 hours of specimen receipt. However, only 54% of laboratories performing direct detection reported rapid reporting of ≥80% of results within the recommended 48 hours of specimen receipt (3).

• Meeting the recommended turnaround times for identification of MTBC within 21 days and DST within 28 days of specimen receipt was problematic for many laboratories with only 71 of 149 (48%) reporting ≥ 80% of ID within 21 days and 57 of 145 (39%) reporting ≥ 80% of DST results within 28 days.

• 250 of 560 (44%) respondents indicated no obstacles to timely transport of specimens.

• 37% of laboratories have electronic reporting capability for providing results to both the health department and clinical care provider. 34% of public health laboratories have no electronic reporting capability, including 38% of State Public Health Laboratories.

• Most laboratories anticipate no major change in workload during the next year but are considering adding additional services. The three top selections for additional services under consideration include nucleic acid amplification tests for direct detection of MTBC, molecular detection of mutations associated with drug resistance, and IGRA.
RESOURCES

APHL TB Laboratory Assessment Tool

Laboratories are encouraged to incorporate the use of this tool into their current Quality Assurance practices as a means to determine the existence of areas within individual laboratories that may be in need of improvement.

http://www.aphl.org/aphlprograms/infectious/tuberculosis/Pages/tbtool.aspx

APHL TB Resource Page

This webpage provide access to reports, tools and guidelines developed by APHL's TB Steering Committee.

http://www.aphl.org/aphlprograms/infectious/tuberculosis/Pages/tbresources.aspx
GLOSSARY OF TERMS

AFB: Acid fast bacilli

Direct detection: Test performed directly from patient specimen (e.g., sputum or bronchial alveolar lavage) for the detection of *Mycobacterium tuberculosis* complex. Tests may include nucleic acid amplification or direct HPLC.

DST: Drug susceptibility test (i.e., antimicrobial susceptibility test)

HPLC: High performance liquid chromatography

ID: Identification

IGRA: Interferon gamma release assay

LDT: Laboratory developed test

Mol-DR: Molecular detection of mutations associated with drug resistance

MTBC: *Mycobacterium tuberculosis* complex

QMS: Quality management system

NTM: Nontuberculous mycobacteria

TAT: Turnaround time
REFERENCES

APPENDIX

Survey Questions and Corresponding Figure

Figure 1: Which laboratory type best describes your facility?

Figure 2: What primary staining method is used for acid-fast smear microscopy of clinical specimens?

Figure 3: What is the primary direct detection method performed by your laboratory?

Figure 4: Which broth-based culture system is primarily used in your laboratory for the isolation of mycobacteria from respiratory specimens?

Figure 5: What is the primary method used to identify isolates of Mycobacterium tuberculosis complex in your laboratory?

Figure 6: In your laboratory, approximately what percentage of mycobacterial cultures processed within the last year were positive for M. tuberculosis complex?

Figure 7: In your laboratory, approximately what percentage of mycobacterial cultures processed within the last year were positive for NTM?

Figure 8: What is the primary method for first-line drug susceptibility testing?

Figure 9: In the last year, what was the average number of M. tuberculosis isolates set up for first-line drug susceptibility testing each month?

Figure 10: What Mycobacteriology reference services do you provide for other laboratories in-house?

Figure 11: In your laboratory, what percentage of AFB-smear microscopy results are reported to the provider within 24 hours of specimen receipt?

Figure 12: In your laboratory, what percentage of M. tuberculosis complex direct detection results are reported to the provider within 48 hours and 72 hours of specimen receipt?

Figure 13: What percent of M. tuberculosis complex does your laboratory identify from culture of clinical specimens (e.g., sputum) within 14, 21, and 28 days of specimen receipt?

Figure 14: What percent of M. tuberculosis complex first-line drug susceptibility testing results does your laboratory report from clinical specimens (e.g., sputum) within 28 and 35 days of specimen receipt?

Figure 15: What is the maximum transport time that your laboratory allows before a specimen will be rejected (date of collection to date of receipt)?

Figure 16: What is the single biggest obstacle to the timely transport of specimens to your laboratory?

Figure 17: Does your state legally require the submission of an isolate of M. tuberculosis complex from all new TB cases to your state and/or local public health laboratory?
Figure 18: Does your laboratory have the capability to report results electronically to the state or local public health department only, clinical care provider only, both, or your laboratory does not have electronic reporting capability?

Figure 19: Have you experienced staff shortages for Mycobacteriology within the last 12 months?

Figure 20: Have those shortages resulted in a decrease in AFB services or an increase in turnaround times?

Figure 21: Has your laboratory experienced any obstacles in recruiting qualified staff to perform Mycobacteriology testing?

Figure 22: What are the biggest obstacles in recruiting qualified staff to perform Mycobacteriology testing?

Figure 23: Over the next 12 months, does your laboratory plan (or anticipate) changes in the volume of testing performed in house?

Figure 24: You indicated your laboratory is anticipating an increase or decrease in workload. Is this increase due to service consolidation within your network or geographic region?

Figure 25: Does your laboratory have any plans to eliminate Mycobacteriology services within the next 12 months or has your laboratory decreased services within the last 12 months?

Figure 26: Which of the following Mycobacteriology services is your laboratory considering adding?

Figure 27: What training topics are most relevant to those performing Mycobacteriology testing in your laboratory?

Figure 28: Does your laboratory have a Continuity of Operations plan to ensure the uninterrupted provision of TB laboratory services in the event of any unforeseen event that affects laboratory testing capability?

Survey Question and Corresponding Table

Table 1: Does your laboratory perform or refer for the following AFB services: AFB-smear microscopy, direct detection, AFB culture, MTBC identification, first-line DST, second-line DST, and IGRA?

Table 2: Approximately how many smears per week does your laboratory process?

Table 3: What is the average number or specimens per week that are set up for culture of AFB in your laboratory?

Table 4: Does your laboratory perform testing for the molecular detection of mutations associated with drug resistance (mol-DR) for M. tuberculosis complex?

Table 5: Does your laboratory perform or refer for the following AFB services: AFB-smear microscopy, direct detection, AFB culture, MTBC identification, first-line DST, second-line DST, and IGRA?
ACKNOWLEDGEMENTS

APHL/ CDC National TB Laboratory Services Survey Workgroup

Kathleen Beavis, MD, PhD, FCAP
John H. Stroger Jr. Hospital of Cook County
Chicago, IL

John Bernardo, MD
Boston University School of Medicine

Barbara Body, PhD, D(ABMM)
Laboratory Corporation of America

Tracy Dalton, PhD
CDC Division of TB Elimination

Denise Dunbar
Laboratory Services Section
Texas Department of State Health Services

Rosemary Humes, MS, MT(ASCP)SM
BARDA, formerly Association of Public Health Laboratories

Ken Jost, Jr., MT(ASCP)
Laboratory Services Section
Texas Department of State Health Services

Billie Ann Juni, MS
Minnesota Public Health Laboratory Division

Raymond Kaplan, PhD
Quest Diagnostics

Mark Lamias
Stochastic Group

Yvette McCarter, PhD
Shands Hospital
Jacksonville, FL

Doug McNamara
Association of Public Health Laboratories

Beverly Metchock, DrPH, D(ABMM)
CDC Division of TB Elimination

Angela Starks, PhD
CDC Division of TB Elimination

Becky Temple
Vermont Department of Health Laboratory

Frances Tyrrell, MPH, MT(ASCP), SM
CDC Division of TB Elimination

David Warshauer, PhD, D(ABMM)
Wisconsin State Laboratory of Hygiene

Kelly Wroblewski, MPH, MT(ASCP)
Association of Public Health Laboratories

Mitch Yakrus, MS, MPH
CDC Division of TB Elimination

Susanne Zanto, BS, CLS(NCA)
Montana Laboratory Services Bureau
This publication was supported by Cooperative Agreement Number #1U60HM000803 from Centers for Disease Control and Prevention (“CDC”). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC.

Funding support for this publication was provided by National Center for Environmental Health (NCEH); National Center for Zoonotic, Vector-borne, and Enteric Diseases (CK); National Center for Immunization and Respiratory Diseases (IP); National Center for HIV, Viral Hepatitis, STDS and TB Prevention (PS); National Center for Infectious Diseases (NCID) (CID); Office of the Director, Centers for Disease Control & Prevention (ODCDC); National Center for Health Marketing (HM).

The National TB Laboratory Services Survey was financed 100% by Federal funds. The total cost of the project was $120,000.