Meeting at a Glance

<table>
<thead>
<tr>
<th>TIME</th>
<th>SUNDAY, JUNE 7</th>
<th>MONDAY, JUNE 8</th>
<th>TUESDAY, JUNE 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00am</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:30am</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:00am</td>
<td></td>
<td>Opening Session/Keynote</td>
<td>Perspectives on TB Molecular Diagnostics</td>
</tr>
<tr>
<td>8:30am</td>
<td></td>
<td>Break</td>
<td>Break</td>
</tr>
<tr>
<td>9:00am</td>
<td></td>
<td>Next Generation Sequencing and Applications for TB</td>
<td>Setting the Standard: The TB Lab System in the US</td>
</tr>
<tr>
<td>9:30am</td>
<td></td>
<td>Lunch (on own)</td>
<td>Highlighting the Work of Our Laboratories</td>
</tr>
<tr>
<td>10:00am</td>
<td></td>
<td></td>
<td>Lunch (on own)</td>
</tr>
<tr>
<td>10:30am</td>
<td></td>
<td></td>
<td>Developments in TB Research</td>
</tr>
<tr>
<td>11:00am</td>
<td></td>
<td></td>
<td>Break</td>
</tr>
<tr>
<td>11:30am</td>
<td></td>
<td>Navigating the World of DST</td>
<td></td>
</tr>
<tr>
<td>12:00pm</td>
<td></td>
<td></td>
<td>TB Case Studies: Lessons from the Field</td>
</tr>
<tr>
<td>12:30pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00pm</td>
<td></td>
<td></td>
<td>Closing Remarks</td>
</tr>
<tr>
<td>1:30pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:00pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:30pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:00pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:30pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:30pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:00pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:30pm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00pm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Welcome Letter

Welcome to the 9th National Conference on Laboratory Aspects of Tuberculosis, co-located with the 2015 National TB Conference in Atlanta — the home of the Braves!

Where are we today? Since 1992, the case rate for tuberculosis has continued to decline in the United States and in 2012 there were 9,951 cases of TB reported — the first time this number was below 10,000 since records began in 1953. The trend has continued, and in 2014 there were 9,412 new cases of TB in the US. Despite this progress, our work is far from done:

• The 2014 incidence rate for TB is 3.0 cases per 100,000 population, the same as in 2013.
• Although the total number of TB cases continues to decline, 2014 showed the smallest decline in incidence in over a decade.
• The TB rate is 13.4 times higher in foreign-born persons than US-born persons and TB continues to disproportionately affect racial/ethnic minorities.
• TB drug resistance rates remain relatively stable, slightly above 1%, with the majority of the multi-drug resistant cases (90%) occurring in foreign-born persons.
• We have yet to reach the Healthy People 2020 goal of no more than 1 new case of TB per 100,000 population or to achieve the goal of TB elimination (1 case per 1,000,000) set in 1989.

What are we doing in the laboratory? The TB laboratory plays an essential role in the fight against TB, striving to provide the highest quality testing as quickly as possible. There have been several noteworthy advances in TB testing since the 8th National TB Conference in 2013:

• Nucleic acid amplification testing continues to be adopted by laboratories performing diagnostic testing for TB.
• Availability of molecular methods for detection of drug resistance has increased.
• The Xpert MTB/RIF assay received FDA market authorization for expanded use to determine if patients with suspected TB can be removed from airborne infection isolation.
• CDC’s Division of TB Elimination Laboratory Branch continues to offer reference services with the addition of the California Department of Health Microbial Disease Laboratory as a reference center for antimicrobial susceptibility testing for states with low TB incidence.
• Next generation sequencing methods are being increasingly utilized, particularly in the identification of outbreaks, enabling TB control programs to more rapidly determine clusters and prevent transmission of TB.

At the 9th National Conference we will hear more about these advances. I hope you enjoy the presentations and take some time to interact with the poster presenters and visit the vendor exhibits. This year we are co-located with the National TB Conference organized by the National TB Controllers Association. We will share meeting breaks with our fellow TB clinicians and TB control program officials, and on Wednesday, June 10 we will host a joint session. Take advantage of the expertise at the meeting and the opportunity to meet face-to-face with colleagues. As in baseball, TB elimination is a team effort — let’s have all the bases covered!

I would like to thank our planning committee for bringing us such an exciting agenda!

Marie-Claire Rowlinson, PhD, D(ABMM)
Chair, program planning committee, 9th National Conference on the Laboratory Aspects of Tuberculosis
About APHL

VISION: A healthier world through quality laboratory systems.

MISSION: Shape national and global health outcomes by promoting the value and contributions of public health laboratories and continuously improving the public health laboratory system and practice.

The Association Of Public Health Laboratories (APHL) is a non-profit 501(c)(3) organization representing governmental laboratories that monitor and detect public health threats, including emerging infectious disease surveillance, detection of metabolic and genetic conditions in newborns, water contamination identification and foodborne outbreak detection. APHL’s members are state, local, county and city public health laboratories, state and local environmental health laboratories, state agricultural laboratories, corporations, individual and student members with an interest in public health laboratory issues, and organizations that share common goals with APHL.

APHL Board of Directors

Judith C. Lovchik, PhD, D(ABMM), president
assistant commissioner, Public Health Protection and Laboratory Services, Indiana State Department of Health

Christopher G. Atchison, MPA, secretary-treasurer
laboratory director, State Hygienic Laboratory at the University of Iowa

Ewa King, PhD, member-at-large
laboratory director, Rhode Island State Health Laboratories

A. Chris Whelen, PhD, D(ABMM), member-at-large
laboratory director, Hawaii Department of Health State Laboratories

Joanne Bartkus, PhD, D(ABMM), member-at-large
laboratory director, Minnesota Public Health Laboratory Division

Maria Lucia Ishida, PhD, public health associate institutional member representative
bureau chief, Florida Bureau of Food Laboratories

Mark Wade, local institutional member representative laboratory services director,
San Antonio Metro Health District Laboratory

Tamara “Tammy” Theisen, MT(ASCP), local institutional member representative
division director, Saginaw County Department of Public Health Laboratory

Christine Bean, PhD, MBA, MT(ASCP), past president laboratory director, New Hampshire Public Health Laboratories

Vacant, president-elect
Conference Planning Committee

Tracy Dalton, PhD, Centers for Disease Control and Prevention

Edward P. Desmond, PhD, D(ABMM), California Department of Public Health

Anne Gaynor, PhD, Association of Public Health Laboratories

Stephanie Johnston, MS, Centers for Disease Control and Prevention

Beverly Metchock, DrPH, D(ABMM), Centers for Disease Control and Prevention

William Murtaugh, MPH, Association of Public Health Laboratories

Jafar Razeq, PhD, HCLD (ABB), Connecticut Department of Public Health

Nancy Robinson, MPH, MT(ASCP), Alabama Bureau of Clinical Laboratories

Marie-Claire Rowlinson, PhD, D(ABMM), Florida Bureau of Public Health Laboratories

William Slanta, M(ASCP), Arizona Department of Health Services

Angela Starks, PhD, Centers for Disease Control and Prevention

Julie Tans-Kersten, MS, MT(ASCP), Wisconsin State Laboratory of Hygiene

Roy Tu’ua, M(ASCP), Missouri State Public Health Laboratory

Paula M. Vagnone, MT(ASCP), Minnesota Department of Public Health

Continuing Education Credits Available

APHL is an approved provider of continuing education programs in the clinical laboratory sciences through the American Society of Clinical Laboratory Science (ASCLS) P.A.C.E® program. Attendees have the opportunity to earn up to 13.5 contact hours by attending the entire conference. Attendance rosters must be signed in each attended session that credit is requested for and the P.A.C.E® certificate must be signed and certified by APHL staff at the registration desk at the end of your time at the conference.

APHL is an approved provider of Certified in Public Health (CPH) Recertification Credits through the National Board of Public Health Examiners (NBPHE). Attendees have the opportunity to earn up to 12 hours of credit by attending the entire conference. APHL will not issue certificates of attendance.
Conference Schedule

SUNDAY, JUNE 7
Registration: 4:00 pm – 7:00 pm

MONDAY, JUNE 8
Registration: 7:00 am – 5:30 pm • Highland Prefunction
Poster viewing times: 8:00 am – 6:15 pm • Highland Prefunction
(Poster presenters should have their posters up by 8:00 am.)

DAY 1
588-831-15, 6.75 contact hours for the entire day
At the conclusion of this day, the participant will be able to:

• Describe the applications of Next Generation Sequencing for a public health mycobacteriology laboratory.
• Discuss the issues surrounding discrepant Drug Susceptibility Test results and ways to address them.
• Explain approaches to improving biosafety when performing molecular testing for MTBC.
• Summarize the considerations for implementing MALDI-TOF MS for identification of mycobacteria.

8:00 am – 9:30 am • Highland I–III
Opening Session and Keynote
The opening session features a keynote address by Dr. David Dowdy on the role of diagnostic testing in both low- and high-burden settings, including the potential impact of diagnostic strategies on the epidemiology and economics of TB control in 2015.

Welcome to the 9th National Conference on Laboratory Aspects of TB
Marie-Claire Rowlinson, PhD, D(ABMM), Florida Bureau of Public Health Laboratories

Labs, Ledgers and Lives Saved: The Impact of Diagnostic Strategies on the Epidemiology and Economics of Tuberculosis
David Dowdy, MD, PhD, Johns Hopkins University Bloomberg School of Public Health
Morning Break

Next Generation Sequencing and Applications for TB
The potential of next generation sequencing (NGS) in public health laboratories is beginning to be realized and now includes applications for TB. This session will provide an overview of NGS technology and considerations for successful implementation in a TB laboratory, as well as possible future directions.

Moderator: Anne Gaynor, PhD, Association of Public Health Laboratories

Overview of Next Generation Sequencing
David Engelthaler, PhD, The Translational Genomics Research Institute (TGen)

CDC’s Use of Whole Genome Sequencing for Genotyping
James E. Posey, PhD, Center for Disease Control and Prevention

Perspectives From a Public Health Laboratory
Kimberlee A. Musser, PhD, Wadsworth Center, New York State Department of Health

Lunch (on your own)

Navigating the World of Drug Susceptibility Testing
Drug resistance continues to be a major public health concern threatening progress made in TB care and control globally. Issues with culture-based methods and the introduction of advanced molecular methods for identifying drug resistance have added more complexity to our understanding of drug resistance. This session will address the ongoing questions with test methodology and results of drug susceptibility tests.

Moderator: Angela Starks, PhD, Centers for Disease Control and Prevention

Evaluation of Phenotypic Drug Susceptibility Test Methods Project (Expanded MPEP Study)
Beverly Metchock, DrPH, D(ABMM), Centers for Disease Control and Prevention

Expected Discrepancies Between Molecular and Growth-based DST: Which Technology Is Giving the Right Answer?
Edward P. Desmond, PhD, D(ABMM), California Department of Public Health, Microbial Diseases Laboratory

Issues in Tuberculosis Drug Susceptibility Testing: TB Subcommittee White Papers
David Warshauer, PhD, D(ABMM), Wisconsin State Laboratory of Hygiene
2:45 pm – 3:15 pm • Highland Prefunction

Afternoon Break and Poster Viewing

Poster presenter should stand by their posters from 2:45 pm to 3:15 pm

3:15 pm – 5:15 pm • Highland I–III

Practical Approaches to Success in the TB Laboratory

With advances in methodologies come opportunities to improve the way classical TB diagnostic methods are delivered. This session will examine various approaches to improving the quality, efficiency and safety of your TB Laboratory.

Moderator: Roy Tu’ua, M(ASCP), Missouri State Public Health Laboratory

Specimen Collection, Packaging and Shipping

William Slanta, M(ASCP), Arizona Department of Health Services

Biosafety and Risk Assessment for New Molecular Methods

Michael Pentella, PhD, D(ABMM), William S. Hinton State Laboratory Institute (MA)

Quality Assurance Issues in the TB Lab

Mike Loeffelholz, PhD, D(ABMM), University of Texas Medical Branch, Galveston

Implementing MALDI-TOF MS

Julie Tans-Kersten, MS, MT (ASCP), Wisconsin State Laboratory of Hygiene

5:30 pm – 6:15 pm • Highland I–III

Special Session

APHL in collaboration with CDC established a quality-assured Drug Susceptibility Testing Reference Center at the California Department of Public Health, Microbial Diseases Laboratory. This session will be an opportunity to learn about enrollment, the role of the reference center, the services provided and its relationship with the Molecular Detection of Drug Resistance (MDDR) testing service provided at CDC.

Moderator: Angela Starks, PhD, Centers for Disease Control and Prevention

National Public Health Laboratory Drug Susceptibility Testing Reference Center for Mycobacterium tuberculosis

California Department of Public Health, Microbial Diseases Laboratory
TUESDAY, JUNE 9

Registration: 7:00 am – 5:15 pm • Highland Prefunction

Exhibit Hall Open: 9:45 am – 4:00 pm • Grand Ballroom Prefunction, Lower Level Lobby

Poster viewing times: 8:00 am – 5:00 pm • Highland Prefunction

DAY 2

588-832-15, 6.75 contact hours for the entire day

At the conclusion of the day, the participant will be able to:

• Discuss how the predictive value and impact of NAAT varies with different patient populations.

• Explain the methods CDC uses to monitor performance of the TB Laboratory System, and describe the changes that have occurred in the past 5 years.

• Describe ways NTM can be identified through sequencing methods.

• List ongoing TB research activities in the field of drug resistance.

8:00 am – 9:45 am • Highland I–III

Perspectives on TB Molecular Diagnostics

Molecular diagnostics such as nucleic acid amplification testing (NAAT) have become standard for rapid detection of M. tuberculosis complex (MTBC) and more frequently for detection of drug resistance. This session will examine how clinical and public health laboratories have integrated rapid molecular diagnostics into their TB testing algorithms and assessed their impact in various settings.

Moderator: Marie-Claire Rowlinson, PhD, D(ABMM), Florida Bureau of Public Health Laboratories

NAAT in the Clinical Laboratory and Impact on Infection Control
Susan Novak, PhD, D(ABMM), Southern California Permanente Medical Group

Xpert MTB/RIF Performance Characteristics in a State Public Health Laboratory Context
Ken Jost, MT(ASCP), Texas Department of State Health Services

Experience With Xpert MTB/RIF in a Low Incidence State
Nancy Robinson, MPH, M(ASCP), Alabama Bureau of Clinical Laboratories

9:45 am – 10:15 am • Grand Ballroom Prefunction

Morning Break in the Exhibit Hall
10:15 am – 11:00am • Highland I–III

Setting the Standard: The TB Laboratory System in the US

This session will explore data from two evaluations from the CDC TB Cooperative Agreement grantees. Presenters will discuss trends in testing volumes, turnaround times and methodologies over the last 5 years, as well as discuss the use of appropriate, realistic and evidence-based recommendations to monitor performance.

Moderator: Stephanie Johnston, MS, Centers for Disease Control and Prevention

It’s All About That Data: Five-Year Laboratory Trends From TB Elimination Cooperative Agreements

Frances Tyrrell, M(ASCP), Centers for Disease Control and Prevention

Evaluation of TB Laboratory Performance Indicators

Tracy Dalton, PhD, Centers for Disease Control and Prevention

11:00 am – 12:00 pm • Highland I–III

Highlighting the Work of Our Laboratories

There is much to be learned from work done in the field. This session will highlight the findings of three outstanding abstracts that have broad applications to TB laboratories.

Moderator: William Murtaugh, MPH, Association of Public Health Laboratories

Development of an Individualized Quality Control Plan (IQCP) for MGIT Pyrazinamide (PZA) Drug Susceptibility Testing (DST)

Denise Hartline, MT(ASCP), Centers for Disease Control and Prevention

Nontuberculous Mycobacteria (NTM) Species Identified Using rpoB/hsp65 Gene Sequencing and erm(41) Gene Analysis

Max Salfinger, MD, FIDSA, FAAM, National Jewish Health

Improvements in Efficiency and Safety: Phenol/Alcohol Fixing of AFB Smears

Jessica Gentry, Indiana State Department of Health

12:00 pm – 1:00 pm

Lunch (on your own)
1:00 pm – 2:30 pm • Highland I–III

Developments in TB Research

The session will provide three cutting-edge projects in TB research, including innovative diagnostics, treatment regimens and the new science of understanding drug resistance.

Moderator: Jafar Razeq, PhD, Dr. Katherine A. Kelley Public Health Laboratory, Connecticut Department of Public Health

- **Development and Evaluation of New Diagnostic Tests for TB**
 Susan Dorman, MD, Johns Hopkins University, Department of Medicine

- **Pharmacokinetics in Pulmonary Lesions/MALDI-MS Imaging Studies of Drug Distributions**
 Brendan Prideaux, PhD, Rutgers University, Public Health Research Institute

- **Shortening Drug Regimens: New Agents for Combination Therapy**
 Eric Nuermberger, MD, Johns Hopkins University, Department of Medicine

2:30 pm – 3:00 pm • Grand Ballroom Prefunction

Afternoon Break in the Exhibit Hall

3:00 pm – 4:45 pm • Highland I–III

TB Case Studies: Lessons From the Field

In practice, there are situations in which the laboratory test results are not clear cut or are difficult to interpret, requiring persistence, good communication and investigative decision making. This session will present four examples of these challenging cases in an interactive format.

Moderators: Marie-Claire Rowlinson, PhD, D(ABMM), Florida Bureau of Public Health Laboratories

 Beverly Metchock, DrPH, D(ABMM), Centers for Disease Control and Prevention

- **Discordance and Low-Level Resistance**
 Megan Ninneman, MMS, PA-C, Jackson Memorial Hospital

 Beverly Metchock, DrPH, D(ABMM), Centers for Disease Control and Prevention

- **Mixed Infections**
 Paula M. Vagnone, MT(ASCP), Minnesota Department of Public Health
Use of Whole Genome Sequencing for Outbreak Investigation and Control
Edward P. Desmond, PhD, D(ABMM), California Department of Public Health, Microbial Diseases Laboratory
Martin Cilnis, MPH, MS, Outbreak Prevention and Control Section, Tuberculosis Control Branch, California Department of Public Health

Diagnosis of TB from Pathology Tissue Specimens
Julu Bhatnagar, PhD, Centers for Disease Control and Prevention, Infectious Disease Pathology Branch

4:45 pm – 5:15 pm • Highland I–III

Conference Wrap Up and Closing Remarks
Marie-Claire Rowlinson, PhD, D(ABMM), Florida Bureau of Public Health Laboratories

5:15 pm

Conference Conclusion
Visit the Exhibitors

Thank you to the exhibitors for their support of our conference! Please visit them on Tuesday.

9:45 – 4:00 pm
Grand Ballroom Prefunction, Lower Lobby Level

Aeras
AiCure
Alpha-Tec System
Atlas Medical
Bruker Corporation
Cepheid
Consilience Software, A Xerox Company
Covaris
IMMY
LW Scientific
MIDI, Inc.
Oxford Immunotec, Inc.
QIAGEN
Thermo Fisher Scientific
WestPrime Healthcare
Poster Abstracts

Poster 1:

Improvement to a multiplex real-time PCR assay to detect IS6110-negative strains of *Mycobacterium tuberculosis* complex DNA in New York State

Objective: To improve the existing multiplex real-time PCR assay that detects *Mycobacterium tuberculosis* complex (MTBC) and *Mycobacterium avium* complex (MAC), targeting IS6110 and 16S-23S ITS respectively, so that rare IS6110-negative strains are detected.

Study Design: The IS6110 is an insertion element that is found exclusively within the MTBC and has become an important diagnostic tool in the identification of MTBC. However, it is known that rare IS6110-negative strains of MTBC exist. In 2012 and 2013, two isolates that lack IS6110 were received at the Wadsworth Center. The testing of these isolates resulted in false negative real-time PCR results. One isolate was later identified as MTBC on day 11 by DNA sequence analysis and one isolate was later identified as MTBC on day 6 by MALDI-TOF MS analysis. To improve our detection of MTBC, a conserved target, ext-RD9, was added to the existing multiplex real-time PCR. A sensitivity comparison of the original MTBC-MAC assay and the new assay containing the ext-RD9 primers/probes was performed as well as a retrospective blinded comparison study on 80 primary specimens.

Results: We found no loss in sensitivity with the new assay containing the ext-RD9 primers and probe. As expected, 78/80 (98%) specimens were concordant, as the new assay detected both IS6110-negative isolates. Two additional isolates missing IS6110, received in 2014, were identified as MTBC on day 1 using the new assay.

Conclusions: We found the addition of the ext-RD9 detection improves the diagnostic capability of the multiplex real-time PCR assay by detecting IS6110-negative strains and will prevent false negative reporting.
Objective: Routine monitoring of cultures in the Mycobacteriology laboratory is six weeks. In 2013, a new protocol was introduced, derived from pg.489 of the 10th Edition of the “Manual of Clinical Microbiology” to screen smear positive and culture negative specimens for an additional 4 weeks. NJ PHAEL evaluated the “10 Week Protocol” to determine value and the reliability. Data evaluation included positive AFB cultures and 10 week negative cultures.

Study Design: From January 1, 2014 to December 31, 2014 six week smear positive and culture negative specimens were screened weekly for an additional 4 weeks. A transilluminator was used to manually screen MGIT tubes and a stereoscope was used for the 7H11plates. Kinyoun AFB staining was done to detect the presence of AFB, NON-AFB and/or mixed cultures. AFB positive MGIT tubes were worked up as were suspect colonies on 7H11plates. A preliminary report to notify clinics of the additional four week protocol and a 10 week final report were created.

Results: Of the 2180 specimens processed, 71 cultures (3.2%) were held for the 10 week protocol. Total percent of additional mycobacteria isolated was 0.6% with 0.5% identified as MTBC (two new patients). Of the 71 cultures held, 58 (81.7%) were reported as final negative. Of the 71 cultures held, 15 (21.1%) mycobacteria were isolated, 10 (14.0%) were identified as MTBC and 5 (7.0%) were NTM. Of the 15 mycobacteria isolated, 10 (66.6%) were MTBC and 5 (33.3%) were NTM.

Conclusions: Based on the number of mycobacteria isolated including two new MTBC patients detected, it was decided to retain the protocol. Holding smear positive and culture negative specimens for an additional 4 weeks, allows for the detection of slower growing mycobacteria.
Poster 3:

W. Candelaria, S. Namdarian, C. Magee, K. Maneclang, Clinical Laboratory, Maricopa Integrated Health System, Phoenix, Arizona

Objective: To decrease the time to definitive diagnosis utilizing the specimen processing system, IMMY MycoDDR and the Cepheid Xpert MTB-RIF nucleic acid amplification test (NAAT).

Study Design: Three sputum specimens were collected 8–24 hours apart and followed through the traditional algorithm, as well as, the newly proposed algorithm for clinical diagnosis from sputum sample processing until confirmed diagnosis. Comparison of the time to diagnosis, patient management and cost savings were used to determine which algorithm was more beneficial overall.

Results: Use of the MycoDDR for sample processing produced improved AFB smears and yielded positive cultures, on average, one day sooner than other specimen processing methods. The MycoDDR system along with the Xpert MTB-RIF resulted in confirmed identification of TB in 1–3 days. This is a significant improvement compared to the 16–18 days to confirmed identification of TB using culture confirmation and off-site NAAT. The decreased time to diagnosis can result in a significant estimated cost savings to the hospital (~$33,600) and a substantial health savings to the patient.

Conclusions: The results of this study suggest that the new proposed algorithm utilizing the MycoDDR sample processing system and the Xpert MTB-RIF for TB diagnosis results in an increased positive patient outcome by providing positive diagnosis faster, which could result in a significant cost savings to the patient and treatment facility.
Poster 4:
Integrated Microfluidic Card with TaqMan Probes and High Resolution Melt Analysis to Detect Tuberculosis Drug Resistance Mutations across 10 Genes

S. Pholwat¹, J. Liu¹, S. Stroup¹, J. Gratz¹, S. Banu², S.M. M. Rahman², S. S. Ferdous², S. Foongladda³, D. Boonlert³, O. Ogarkov⁴, S. Zhdanova⁴, G. Kibiki⁵, S. Heysell¹, and E. Houpt¹

¹University of Virginia, ²International Center for Diarrheal Diseases and Research, Bangladesh, ³Mahidol University, Thailand, ⁴Russian Academy of Medical Sciences, Russia, ⁵Kilimanjaro Clinical Research Institute, Tanzania

Objective: To develop a microfluidic TaqMan array card that utilizes both sequence-specific probes and high resolution melt analysis (TAC-HRM) to detect TB drug resistance mutations.

Study Design: Forty seven targets were designed to interrogate critical regions of the inhA, katG, rpoB, embB, rpsL, rrs, eis, gyrA, gyrB, and pncA genes. The assay optimization of each target was performed on 384 well PCR format. The optimized assays were spotted into microfluidic card; DNA sample was mix with PCR reagent then load in to card and performed PCR.

Results: The method was evaluated on 230 clinical M. tuberculosis isolates from Bangladesh, Thailand, Russia, Tanzania and the US; yielded 96.1% (range 81%–99%) accuracy versus Sanger sequencing and 87% (range 72%–94%) accuracy versus the culture-based susceptibility results.

Conclusions: This TAC-HRM method yields a fast, comprehensive, and accurate drug susceptibility result for the 9 major antibiotics, and could be performed at public health laboratories without sequencing capabilities while awaiting MDDR and phenotypic DST.
Poster 5:
Validation of MALDI-TOF for identification of Mycobacteria
Donald Busalacchi, Julie Tans-Kersten and Dave Warshauer, Wisconsin State Laboratory of Hygiene, Madison, Wisconsin

Objective: Recent advancements in Matrix-assisted Laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) have permitted its application to the field of clinical microbiology. We validated the Bruker Biotyper system for identification of mycobacteria and integrated this method as a key component of our novel testing algorithm.

Study Design: The Bruker MycoEX protein extraction protocol was optimized through the addition of a secondary liquid media wash step, and the post-extraction viability of MTBC was determined. Variables known to affect the quality of MALDI identification scores including culture age and media type were evaluated. Most importantly, the ability of MALDI to identify acid-fast organisms directly from newly-positive MGIT broth culture was evaluated.

Results: We analyzed over 450 independently identified strains representing 40 species of mycobacteria and fully validated our testing algorithm for identification of M. tuberculosis complex, M. avium complex and 14 species of non-tuberculous mycobacteria. MALDI could identify pure growth of mycobacteria from 7H10 plate, 7H9 broth and LJ slant with little difference in score and no difference in identification. Approximately 6 x10^7 organisms were needed for adequate identification, and MALDI scores were shown to decrease as cultures age. Direct MALDI identification from positive MGIT cultures inoculated with primary patient specimens proved difficult due to low numbers of cells and high background from patient inoculum proteins. Only 25% of mycobacteria-containing, instrument-positive MGIT tubes could be identified within one day of positivity.

Conclusions: Although identification could not routinely be obtained from MGIT cultures, MALDI has the potential to yield quicker, less expensive, more automated, and more accurate results than previous identification systems if carefully integrated into an identification work flow.
Poster 6:

Correlation of *erm41* sequevar with the time to detection of inducible macrolide resistance in *M. abscessus* group organisms.

S. Christianson, W. Grierson, J. Wolfe, M. Sharma. Public Health Agency of Canada, Winnipeg, Mannitoba

Objective: A T28C mutation in the *erm41* gene is associated with inducible macrolide resistance in *Mycobacterium abscessus* group organisms. A previous study by these authors showed that the majority of *M.abscessus* strains show inducible resistance by day 7, but some take 10–14 days. This study aimed to determine if there was a correlation between the length of time it takes to detect inducible macrolide resistance in *M.abscessus* group organisms and their *erm41* sequevar.

Study Design: We amplified and sequenced the *erm41* genes of a total of 81 *M.abscessus* group isolates. Sequevars were determined as previously described. The isolates were tested for phenotypic clarithromycin resistance using Trek Diagnostics Sensititre RAPMYCO microbroth dilution plates. The clarithromycin MIC was recorded at days 7, 10 and 14. The *erm41* gene sequences were correlated with time to detection of resistance.

Results/Conclusions: Of the 81 isolates tested, 15 had truncated *erm41* genes and 66 had the full length gene. Nine isolates with full length genes had a T28C mutation. All isolates with a truncated gene and 8/9 of isolates with T28C mutations were sensitive after a 14 day incubation. Of the remaining isolates, 53 had inducible resistance that was identified at 7 days and 4 had inducible resistance that was identified after 10 days. These 57 isolates fell into 12 sequevars. Three sequevars contained the 4 strains with 10 day detection times. Based on this data, there does not appear to be a correlation between *erm41* sequevar and time to the detection of inducible macrolide resistance.
Poster 7:

Analysis of rpoB Mutations with Variable Rifampin Results in the Model Performance Evaluation Program (MPEP)

C. Stafford, B. Metchock. Centers for Disease Control and Prevention, Atlanta, Georgia

Objective: Certain mutations in the rpoB gene of Mycobacterium tuberculosis complex (MTBC) result in borderline or low-level rifampin (RMP) resistance that increases the RMP minimum inhibitory concentration (MIC) above that of RMP-susceptible isolates lacking a detectable rpoB mutation. Growth-based drug susceptibility testing (DST) methods may not detect this low-level resistance. CDC’s MPEP, which assesses laboratories’ DST practices, evaluated the ability of participating laboratories to detect RMP resistance in isolates with these types of rpoB mutations.

Study Design: MPEP shipped three MTBC isolates with Asp516Tyr, His526Leu, and His526Asn rpoB mutations in the 2013 and 2014 biannual surveys. Self–reported DST results were analyzed in aggregate, by mutation, and by method (i.e., MGIT, agar proportion [AP], Sensititre, and VersaTrek).

Results: In aggregate, 18% (57/313) of growth-based DST results indicated resistance to RMP. Isolates with Asp516Tyr and His526Asn mutations had 2% and 0% of results reported as resistant, respectively. For the isolate with a His526Leu mutation, 56% of all results were reported as resistant; stratification by method showed 50% resistance for MGIT and 83% for AP.

Conclusions: Growth-based DST methods continue to produce variable RMP results for isolates with certain rpoB mutations. Further investigation is needed in terms of how DST results for isolates with these types of rpoB mutations shape treatment regimens and affect clinical outcomes.
Poster 8:

Development of an Individualized Quality Control Plan (IQCP) for MGIT Pyrazinamide (PZA) Drug Susceptibility Testing (DST)

D. Hartline, L. Diem, J. Spencer, B. Metchock. Centers for Disease Control and Prevention, Atlanta, Georgia

Objective: IQCP is a 3-step process incorporating risk assessment, quality control (QC) planning, and quality assessment (QA) monitoring. The process identifies the specific QC requirements for a particular test. Our laboratory developed an IQCP for MGIT PZA DST based on manufacturer’s instructions—weekly QC (vs. each run) and only one control (susceptible to PZA). IQCP is expected to allow our laboratory to follow these QC practices and meet CLIA requirements.

Study Design: Laboratory operating and QC procedures were reviewed and a risk assessment performed to identify the potential to cause harm in five test process components (specimen, test system, reagents, environment, testing personnel). Pre-analytical, analytical and post-analytical processes were assessed. Established or proposed controls were documented, risks characterized by probability and severity of harm, and acceptability of residual risk determined.

Results: We identified >25 risks. Controls were already in place for the majority. No unacceptable residual risk was identified. A QC plan has been developed, along with QA monitoring to periodically review the QC plan for effectiveness.

Conclusions: We have created a customized QC plan, which supports performing the weekly QC for MGIT PZA DST and provides equivalent quality testing to meet the CLIA QC regulations.
Poster 9:
Detection of resistance to first-line anti-tuberculosis drugs: Correlation between molecular and growth-based antimicrobial susceptibility testing methods
C. Chiribau¹, S. Crowe¹, M. Salfinger², M-C. Rowlinson¹, ¹Florida Department of Health-Bureau of Public Health Laboratories (BPHL), Jacksonville, FL, ²National Jewish Health (NJH), Denver, Colorado

Objective: BPHL performs antimicrobial susceptibility testing (AST) of Mycobacterium tuberculosis complex (MTBC) by microtiter plate method. A major challenge with this method is longer turnaround times (TAT). To provide faster AST for first-line drugs, BPHL performs molecular methods which have much shorter TAT and in some cases can be performed directly on the specimen.

Study Design: DNA sequencing of the pncA gene was performed to determine mutations associated with resistance to pyrazinamide (PZA). Growth-based AST for PZA was performed at NJH by MGIT960 method for MTBC with pncA mutations. GenoType MTBDRplus (Hain) test was performed to detect mutations associated with resistance to isoniazid (INH) and rifampin (RIF). Growth-based AST was performed by the TREK Sensititre® method. 960 specimens from first time TB-patients were analyzed.

Results: Results from 960 MTBC positive cultures were reviewed and analyzed. Overall, we observed a concordance of 98.8 % (948/960) for INH and RIF between the Hain test and Sensititre results. 46 non-synonymous pncA mutations were detected by sequencing and of these mutations 74% (34/46) were concordant, and found to be resistant, by growth-based testing methods.

Conclusions: Molecular testing is an important part of the algorithm for detecting resistance to the first-line drugs: RIF, INH and PZA. In combination with growth-based susceptibility testing, these methods provide valuable information to the clinicians in a timely manner.
Poster 10:

Ontario Universal Typing — Tuberculosis (OUT-TB) — To The Web and Beyond

J. L. Guthrie¹, A. Marchand-Austin¹, K. Lam¹, D. C. Alexander ², F. B. Jamieson ¹

¹Public Health Ontario, Toronto, Ontario, ²Saskatchewan Disease Control Laboratory, Regina, Saskatchewan

Objective: Tuberculosis (TB) control requires coordination of health system activities and resources. Case investigation and contact tracing activities generate data that is essential to TB surveillance and prevention, requiring significant information management.

Study Design: In 2008, the Public Health Ontario Laboratories implemented the OUT-TB program to monitor the spread of TB strains within Ontario. Engaging health-unit stakeholders, OUT-TB Web was developed using a relational database platform with GIS technology, combining information about TB cases and associated TB isolates, in a visual display and line-list format. OUT-TB Web, using secure internet access, allows authorized users to view TB genotyping matches and laboratory results within the context of relevant clinical and epidemiological data.

Results: OUT-TB Web is currently available to 8 public health units, accounting for >85% of all TB cases in the province, and is an essential tool for TB case-management. User group sessions and ad-hoc feedback from end-users has identified key features implemented in application enhancements, including an email alert function, customizable heat maps for visualizing TB and drug-resistant cases, socioeconomic map layers, a dashboard providing health unit specific and provincial TB surveillance metrics, and a time slider feature “animating” the geographic spread of strains over time. The latest application version now provides reporting of closely related matches.

Conclusions: An award-winning application, OUT-TB Web has proven to be a useful tool, with development and enhancements determined through user feedback. Planned future versions will include addition of other data sources, and development of a mobile app.
Poster 11:
Method for Improved Fluorescent Acid Fast Staining Using an Acetone Step and Bulk Staining

K. May, F.B. Jamieson, Public Health Ontario, Toronto, Ontario

Objective: To compare a bulk staining method employing an acetone step (remove background debris) to the traditional auramine rhodamine rack staining method.

Study Design: 1) Slides are routinely stained individually using racks over a sink; in order to incorporate the acetone step and to minimize the release of acetone vapour into the environment, the use of bulk staining in containers was assessed to determine the potential for cross-contamination of negative smears from positive smears. 2) Bulk staining was then performed with no acetone and with acetone, and the results compared to the conventional individual rack staining protocol for quality of the smear, time required to read, and accuracy.

Results: 1) Ten sets of smears combining a total of 120 heavy positives with 120 negatives were passed through the same staining baths in various configurations and all negatives remained negative. No cross contamination occurred during the bulk staining tests. 2) Method comparison by staff ranked acetone method over rack staining to be improved for quality, as well as accuracy (11% avium / 2% MTBC). Enumeration of true positive smears was consistently higher using the acetone method (15% for avium / 20% for MTBC). Time taken to read the smears was reduced by 11% per smear. No improvement was seen from bulk staining without acetone.

Conclusions: Based on the results, we incorporated this staining method into our routine work flow. In the first year of use, we saw a significant increase in the proportion of MTBC isolates that were smear positive, combined with a decrease in number of smear positives that did not grow.
Poster 12:
Nontuberculous Mycobacteria (NTM) Species Identified using rpoB/hsp65 Gene Sequencing and erm(41) gene analysis

National Jewish Health (NJH), Advanced Diagnostic Laboratories, Denver, Colorado

Objective: Accurate identification of NTM is an ever evolving challenge. Newer assays allow the distinction between M. abscessus, M. massiliense and M. bolletii. Patients with M. massiliense respond more favorably to appropriate antimicrobial therapy and for this reason clinicians should request a final identification of organisms within the M. abscessus group.

Study Design: NJH performs identification on over 3,600 isolates annually using rpoB gene sequencing. Our current identification algorithm starts with rpoB gene sequence analysis, which reflexes to erm(41)/hsp65 analysis for species identification within the M. abscessus group.

Results: More than 8,700 isolates were analyzed over 26 months using rpoB gene sequencing. Seven Mycobacterium species accounted for ~80% of all isolates tested: 24.4% M. abscessus group, 19.9% M. avium, 16.4% M. intracellulare, 6.0% M. chimaera, 5.1% M. fortuitum, 3.8% M. gordonae, and 3.7% M. chelonae. Over 2,000 clinical isolates were reflexed to erm(41)/hsp65 analysis for species differentiation within the M. abscessus group. 18.4% resulted in a species within the M. abscessus group that was different from the identification returned by rpoB gene sequencing. 71.7% were identified as M. abscessus, 20.5% M. massiliense and 5.4% M. bolletii.

Conclusion: Reflex sequencing of hsp65 and gel analysis of the erm(41) gene product is required for accurate identification to the species level.
Poster 13:

Improvements in Efficiency and Safety: Phenol/Alcohol Fixing of AFB Smears

J. Gentry, E. Harris, S. Blosser, J. Lovchik, L. Liu, Indiana State Department of Health Laboratory, Indiana

Objective: To decrease the testing time, improve the sensitivity, and decrease the risks associated with heat fixing smears of *Mycobacterium tuberculosis* complex

Study Design: Our Tuberculosis Laboratory prepared duplicate smears with 40 previously tested processed sputum specimens and 10 AFB cultures (five MGITs and five 7H11 plates). One set was fixed with the traditional heat fixing method on a slide warmer set at 65–75° C for two hours and a second set was fixed using 5% phenol in 70% ethanol for five minutes in the BSC. Both sets of slides were then removed from the BSC and stained using Auramine-O (sputa and MGITs) or Kinyoun (7H11). Slides were viewed under low power (200X) and counted under high power (500X). The microscopic results of both methods were compared.

Results: The phenol/alcohol fixed smear results were in 100% agreement with the heat fixed smear results, with slightly higher AFB counts, indicating increased sensitivity of the new method. The smear fixing time is significantly decreased, resulting in AFB results being reported to the submitter nearly two hours earlier in the day.

Conclusion: The new method has resulted in more sensitive and rapid detection of AFB. Reporting the results out earlier in the day allows the submitters to take action on the positive results the same business day. With the previous method, the results were reported so late in the day that this was usually not possible. Additionally, PCR extractions can be performed on AFB positive smears the same day, resulting in more rapid confirmation of MTBC. The chemical fixing of the smears in the BSC effectively kills any MTBC that is present, decreasing the risks to analysts.
Poster 14:
Evaluation of a Testing Algorithm Utilizing a Multiplexed PCR and Melt Curve Analysis Method

Objective: To evaluate the performance of a relatively inexpensive, simple, multiplexed PCR method in the rapid identification of various Mycobacterium species as an adjunct to MALDI-TOF MS at the Arizona State Public Health Laboratory (ASPHL).

Study Design: Various isolates grown on solid or liquid media identified by MALDI-TOF, HPLC or 16SrDNA partial sequencing will be tested by the multiplexed PCR/melt curve analysis for comparison.

Results: A total of 72 isolates grown either from solid or liquid media were tested. Of the 72 isolates tested, 51 isolates were members of Mycobacterium genus representing 13 species frequently identified at ASPHL. The multiplex PCR method performed as expected accurately identifying species that method is capable of targeting in both liquid and solid media. The method showed high specificity as only one sample demonstrated cross-reactivity.

Conclusions: Though a more comprehensive study needs to be conducted, the data suggests that the relatively inexpensive PCR/melt curve method can be used reliably for the rapid identification of various Mycobacterium species (including MTBC) from both liquid and solid media. Currently, ASPHL identifies all isolates from solid media by MALDI-TOF but is dependent on HPLC identification from liquid media. As this method is still undergoing extensive evaluation, ASPHL is currently examining the feasibility of implementing this method as a replacement for HPLC in the current testing algorithm.
Attendee List

Ahmad Abuarqoub, BS
Supervisor
Illinois Department of Public Health
TB Laboratory
2121 W. Taylor St.
Chicago, IL 60612
312.793.1951
ahmad.abuarqoub@illinois.gov

Blessing Akhivbareme
Microbiologist
41A Hylton Road
Sunderland SR4 7AF
United Kingdom
07990426777
blessingakhivbareme@gmail.com

Rose Barnett, MLT (ASCP)
Microbiologist
Maine Health and Environmental Testing Laboratory
Maine CDC
221 State St, SHS12
Augusta, ME 04333-0012
207.287.7106
rose.barnett@maine.gov

Dorothy Baynham, MT(ASCP)
Manager, Special Microbiology
Tennessee Department of Health: Laboratory Services
630 Hart Lane
Nashville, TN 37243
615.262.6366
dorothy.baynham@tn.gov

La’Vonda Benbow
Mycobacteriology Laboratory Supervisor
North Carolina State Labortatory of Public Health Microbiology
4312 District Dr.
Raleigh, NC 27607
919.807.8767
lavonda.benbow@dhhs.nc.gov

Sara Blosser, PhD
Division Director
Indiana State Department of Health
Clinical Microbiology and Virology
550 W. 16th St., Suite B
Indianapolis, IN 46202
317.921.5894
sblosser@isdh.in.gov

Gary Budnick, BS, MHS
Supervising Microbiologist
Katherine A. Kelley Public Health Laboratory
395 West Street
Rocky Hill, CT 06067
860.920.6560
Gary.Budnick@ct.gov

Barbara Burns, BS (ASCP)
Microbiologist 4
New Jersey Department of Health and Senior Services
PHEAL - TB Laboratory
3 Schwarzkopf Dr.
Ewing, NJ 08628
609.671.6428
Barbara.Burns@doh.state.nj.us

Donald Busalacchi, BS
Microbiologist
Wisconsin State Laboratory of Hygiene
Bacteriology-Mycobacteriology
465 Henry Mall
Madison, WI 53706
608.265.2810
donald.busalacchi@slh.wisc.edu

Jane Campbell, MHS, MT(ASCP)
Clinical Services Director
Mississippi Public Health Laboratory
570 East Woodrow Wilson Dr.
Jackson, MS 39216
601.576.7582
jane.campbell@msdh.state.ms.us

Carol Campus
Senior Scientist
VA Division of Consolidated Laboratory Services
Microbial Reference, TB Lab
600 N. 5th Street
Richmond, VA 23219
804.648.4480
carol.campus@dgs.virginia.gov
Calin Chiribau, PhD, MLS(ASCP)
Florida Department of Health Bureau of Public Health Laboratories
1217 Pearl Street
Jacksonville, FL 32202
904 -791-1500
Calin.Chiribau@flhealth.gov

Paige Chorpa, MS
Associate Service Fellow
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404-639-7007
hdv4@cdc.gov

Sara Christianson
Public Health Agency of Canada - National Microbiology Laboratory
1015 Arlington Street
Winnipeg, MB R3E 3R2
Canada
sara.christianson@phac-aspc.gc.ca

Martin Cilnis, MPH, MS
Epidemiologist
California Department of Public Health
CID/DCDC/TCB/OPCS
850 Marina Bay Parkway, Bldg. P, 2nd Floor
Richmond, VA 94804
510.620.3015
martin.cilnis@cdph.ca.gov

Melinda Clark
Principal Scientist
VA Division of Consolidated Laboratory Services
Microbial Reference Lab
600 North 5th St.
Richmond, VA 23219
804.648.4480 (223)
melinda.clark@dgs.virginia.gov

Mary Robin Connelly, MMSc
Manager
Georgia Public Health Laboratory
Mycobacteriology
1749 Clairmont Road
Decatur, GA 30033-3040
404.327.7941
mary.connelly@dph.ga.gov

Lauren Cowan, PhD
Biologist
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.1481
los4@cdc.gov

Tracy Dalton, PhD
Deputy Chief
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.3904
dvx7@cdc.gov

Jonathan Daniels
Policy and Advocacy Manager
Aeras
1405 Research Blvd
Rockville, MD 20850
jdaniels@aeras.org

Edward Desmond, PhD
Chief, Mycobacteriology Section
California Department of Public Health
Microbial Diseases Laboratory
850 Marina Bay Parkway
Richmond, CA 94804
510.412.3781
ed.desmond@cdph.ca.gov

Lisa Dettinger, BS, MT(ASCP)
Supervisor
Pennsylvania Bureau of Laboratories
Div. of Microbiology
110 Pickering Way
Exton, PA 19341
484.870.6416
lrdett@pa.gov

Lois Diem, MT (ASCP)
Quality Management Systems Officer
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.2862
lgd9@cdc.gov

Susan Dorman, MD
Associate Professor of Medicine & International Health
John Hopkins University School of Medicine
Department of Medicine
Baltimore, MD 21212
410.340.3412
desusan1@jhmi.edu

David Dowdy, MD, PhD
B. Frank & Kathleen Polk Assistant Professor
John Hopkins Bloomberg School of Public Health
Epidemiology
615 N. Wolfe St.
Baltimore, MD 21205
410.614.5022
ddowdy1@jhmi.edu
Jeff Driscoll, PhD
Senior Service Fellow
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.1283
Hzd4@cdc.gov

Denise Dunbar
Manager
Texas Department of State Health Services
Mycobacteriology Mycology
1100 W. 49th St.
Austin, TX 78756
512.458.7342
denise.dunbar@dshs.state.tx.us

David Engelthaler, PhD
Director, Programs and Operations
TGen North
Pathogen Genomics Division
3051 W. Shamrell Blvd., Suite 106
Flagstaff, AZ 86005
928.226.6355
dengelthaler@tgen.org

Matthew England, BS
Mycobacteriology/Mycology Supervisor
Oklahoma Public Health Laboratory
1000 NE 10th Street
Oklahoma City, OK 73013
405.271.5070
matthew.e@health.ok.gov

Vincent Escuyer, PharmD, PhD, MS
Director, Mycobacteriology Laboratory
New York State Department of Health-
Wadsworth Center
Bacterial Disease
120 New Scotland Ave
Albany, NY 12208
518.473.1129
vincent.escuyer@health.ny.gov

Jeanne Filbey, BS MT(ASCP)
Lead Medical Technologist
Nebraska Medicine
Mycobacteriology Lab/Microbiology Lab
Clarkson Tower, 987549 Nebraska Medicine
Omaha, NE 68198-7549
402.552.2090
Jfilbey@nebraskamed.com

Myriam Garcia-Negron, MS, MT(ASCP)
Laboratory Director
Puerto Rico Public Health Laboratory
Institute of Health Laboratories
PO Box 70184
San Juan, PR 00936-8184
787.765.2929 (3726)
Mgarcia@salud.pr.gov

Anne Gaynor, PhD
Manager, HHST
Association of Public Health Laboratories
8515 Georgia Ave, Suite 700
Silver Spring, MD 20910
240.485.2739
anne.gaynor@aphl.org

Paula Gibbs, BS, MLS(ASCP)
Assistant Microbiology Director
Tennessee Department of Health: Laboratory Services
630 Hart Lane
Nashville, TN 37247
615.262-6364
paula.l.gibbs@tn.gov

Scott Gondzar, MPH, BS, BA
Microbiologist
Wyoming Public Health Laboratory
Microbiology-Mycobacteriology
208 South College Drive
Cheyenne, WY 82002
307.777.6060
Scott.gondzar@wyo.gov

Stephen Gregoire, BS
Principal Microbiologist
Idaho Bureau of Laboratories
2220 Old Penitentiary Rd
Boise, ID 83712
208.334.2235 (272)
gregoirs@dhw.idaho.gov

Paul Gryzbowski
ORISE Fellow
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404-639-1480
XWW2@cdc.gov

Nicole Haddox, BS
Microbiologist III
West Virginia Office of Laboratory Services
Microbiology
167 11th Avenue
South Charleston, WV 25303
304.558.3530 (2621)
icole.d.haddox@wv.gov

Stacey Hall, BS
TB Lab Supervisor
Alabama Bureau of Clinical Laboratories
8140 AUM Dr.
Montgomery, AL 36117
334.213.2841
Stacey.hall@adph.state.al.us
Denise Hartline, MT (ASCP)
Microbiologist
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.1284
hwz9@cdc.gov

Kimberly Hertin
DIIS II
Southern Nevada Health District
HIV/ TB/ HEP/ STD
330 S. Valley View Blvd., PO Box 3902
Las Vegas, NV 89107
702.759.0721
hertin@snhdmall.org

Jeannette Hinnant, BS, CPM
Supervisory Public Health Advisor
District of Columbia Department of Health
HAHSTA - Division of STD and TB Control
899 N. Capitol St. NE, 4th Floor
Washington, DC 20002
202.698.4037
jeannette.hinnant@dc.gov

Gregory Hovan, MBA
Clinical Laboratory Manager
Delaware Public Health Laboratory
30 Sunnyside Rd
Smyrna, DE 19977-1707
302.223.1520
gregory.hovan@state.de.us

Kelsey Hughes
ORISE Fellow
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404-639-1475
wye0@cdc.gov

Frances Jamieson, MD
Medical Microbiologist
Public Health Ontario Laboratories
Public Health Ontario Laboratories
661 University Ave, Ste 1701
Toronto, ON M5G 1M1
Canada
647-792-3169
Frances.Jamieson@oahpp.ca

Alan Jarrell, BS
Public Health Laboratory Scientist
Missouri State Public Health Laboratory
101 North Chestnut St, PO Box 570
Jefferson City, MO 65102-0570
573.751.3334
alan.jarrell@health.mo.gov

Ryan Jepson
Clinical Laboratory Technical Specialist
State Hygienic Laboratory at the University of Iowa
TB/ Mycology
2490 Crosspark Rd.
Coralville, IA 52240
319.335.4256
ryan.jepson@uiowa.edu

Travis Jobe, BS, M(ASCP)
Supervising PHM
San Diego County Public Health Laboratory
Mycobacteriology Laboratory
3851 Rosecrans St., Suite 716
San Diego, CA 92110
619.692.8606
travis.jobe@sdcournty.ca.gov

Kartee Johnson
ORISE Fellow
CDC, DTBE/ Laboratory Branch
Atlanta, GA 404-639-1477
vld2@cdc.gov

Stephanie Johnston, MS
Team Lead, Laboratory Capacity Team
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.5019
sip5@cdc.gov

Kenneth Jost, BA, M(ASCP)
Tuberculosis Applications Scientist
Texas Department of State Health Services
Laboratory Services Section
Mycobacteriology Laboratory
Austin, TX 78714-9347
512.458.7580
ken.jost@dshs.state.tx.us

Justin Kandler, PhD
ORISE Fellow
CDC, DTBE/ Laboratory Branch
Atlanta, GA
yyy1@cdc.gov

Kate Klein, MPH, M(ASCP)
ORISE Fellow
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404-639-4322
XIMO@cdc.gov

Thiphasone Kongphet-Tran, MS, MT (ASCP)
Associate Service Fellow
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.5482
wke3@cdc.gov
<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Position</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebecca Kramer, BS</td>
<td>Microbiologist</td>
<td>Michigan Public Health Laboratory</td>
<td>517.335.8063</td>
<td>kramerr1@michigan.gov</td>
</tr>
<tr>
<td>Barry Kreiswirth, PhD</td>
<td>Director, PHRI TB Center</td>
<td>Public Health Research Institute</td>
<td>973.853.3420</td>
<td>kreiswba@njms.rutgers.edu</td>
</tr>
<tr>
<td>Gertrud Kupferschmidt</td>
<td>Bacteriologist</td>
<td>Minnesota Public Health Laboratory Division</td>
<td>651.201.5323</td>
<td>Gertrud.Kupferschmidt@state.mn.us</td>
</tr>
<tr>
<td>Sung-Soon Lee</td>
<td>Professor</td>
<td>#170 Juhwaro Ilsan Seogu</td>
<td>510.412.3929</td>
<td>Sungsoonlee@Gmail.com</td>
</tr>
<tr>
<td>Shou-Yean Grace Lin, MS</td>
<td>Research Scientist III</td>
<td>California Department of Public Health</td>
<td>510.412.3929</td>
<td>Grace.Lin@cdph.ca.gov</td>
</tr>
<tr>
<td>Mike Loeffelholz, PhD</td>
<td>Director, Clinical Microbiology Laboratory</td>
<td>University of Texas Medical Branch</td>
<td>409.747.2484</td>
<td>mlloeffe@utmb.edu</td>
</tr>
<tr>
<td>Allison McAllister, MPH</td>
<td>Microbiologist</td>
<td>CDC, DTBE/ Laboratory Branch</td>
<td>404-639-4925</td>
<td>ihk5@cdc.gov</td>
</tr>
<tr>
<td>Elaine McCaffery</td>
<td>Group Manager</td>
<td>Virginia Div. of Consolidated Lab Services</td>
<td>804.648.4480 (210)</td>
<td>elaine.mccaffery@dgs.virginia.gov</td>
</tr>
<tr>
<td>Alexandra Mercante, PhD</td>
<td>Associate Service Fellow</td>
<td>CDC, DTBE/Laboratory Branch</td>
<td>404.639.2414</td>
<td>wip2@cdc.gov</td>
</tr>
<tr>
<td>Beverly Metchock, DrPh, D(ABMM)</td>
<td>Team Lead, Reference Laboratory Team</td>
<td>CDC, DTBE/ Laboratory Branch</td>
<td>404.639.1285</td>
<td>bem1@cdc.gov</td>
</tr>
<tr>
<td>Frances Morgan, PhD</td>
<td>Deputy Director/Environmental Section Chief</td>
<td>Kansas Health & Environmental Laboratories</td>
<td>785.296.1647</td>
<td>fmorgan@kdheks.gov</td>
</tr>
<tr>
<td>Glenn Morlock, MS</td>
<td>Microbiologist</td>
<td>CDC, DTBE/ Laboratory Branch</td>
<td>404.639.0147</td>
<td>gpm0@cdc.gov</td>
</tr>
<tr>
<td>William Murtaugh</td>
<td>Specialist, Infectious Diseases</td>
<td>Association of Public Health Laboratories</td>
<td>240.485.2127</td>
<td>william.murtaugh@aphl.org</td>
</tr>
<tr>
<td>Kimberlee Musser, PhD</td>
<td>Chief, Bacterial Diseases</td>
<td>New York State Department of Health-Wadsworth Center</td>
<td>518.474.4177</td>
<td>musser@wadsworth.org</td>
</tr>
</tbody>
</table>
Subhadra Nandakumar, PhD
Senior Service Fellow
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.3090
ifd0@cdc.gov

Alla Ostash, BS
Washington Public Health Laboratories
Microbiology/TB Lab
1610 NE 150th St.
Shoreline, WA 98155
206.418.5473
alla.ostash@doh.wa.gov

Megan Ninneman, MMS, PA-C
Physician Assistant
Jackson Memorial Hospital
Respiratory Care Unit
1611 NW 12th Ave.
Miami, FL 33136
305.585.5207
megan.ninneman@jhsmiami.org

Eghosa Ivy Oyegun, MPH
ORISE Fellow
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404-639-0118
WVW2@cdc.gov

Lea Nisay, BS
Guam Dept. of Public Health & Social Services
123 Chalan Kareta
Mangilao, GU 96913-6304
671.735.7170
lea.nisay@dphss.guam.gov

Michael Pentella, PhD, MS, D(ABMM)
Laboratory Director
William A. Hinton State Laboratory Institute
305 South St.
Jamaica Plain, MA 02130
617.983.4362
michael.pentella@state.ma.us

Susan Novak-Weekley, PhD
Director of Microbiology
Kaiser Permanente
11668 Sherman Way
North Hollywood, CA 91605
818.503.6884
susan.m.novak@kp.org

Anthony Pere
Laboratory Technologist
Atkinson Building, 3 Trimdon Street SR4 6 AH
Sunderland, SR4 6 AH
United Kingdom
+44772156835
antonypere@yahoo.com

Eric Nuermberger, MD
Associate Professor of Medicine
John Hopkins University
1550 Orleans St.
Baltimore, MD 21287
410.502.0580
enuermbr@jhmi.edu

Dannette Poole, MLT (ASCP)
Supervisor
South Carolina Dept. of Health & Env. Control
TB Lab
8231 Parklane Rd.
Columbia, SC 29223
803.896.0828
pooledd@dhec.sc.gov

Richard Oatis, BS
PH Lab Scientist Supervisor
Maryland DHMH
Labs Administration
201 W. Preston St.
Baltimore, MD 21201
410.767.6130
richard.oatis@maryland.gov

James Posey, PhD
Team Lead, Applied Research Team
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.1712
hzp9@cdc.gov

Lisa Onischuk, MPH, MT(ASCP)
Supervisor, General Microbiology
New Mexico Department of Health
1101 Camino de Salud NE
Albuquerque, NM 87102
505.383.9128
lisa.onischuk@state.nm.us

Brendan Prideaux, PhD
Researcher
PHRI
Rutgers University, New Jersey Medical School
224 Warren St.
Newark, NJ 07103
201.281.8025
prideabr@njms.rutgers.edu
Paula Snippes Vagnone, MT(ASCP)
Supervisor, Microbiology Unit, ID Laboratory
Minnesota Department of Health
Public Health Laboratory
601 Robert Street North
St. Paul, MN 55164-0899
651.201.5581
paula.snippes@state.mn.us

Kevin Sohner, BS
Microbiology Supervisor
Ohio Department of Health Laboratories
Special Microbiology
8955 E. Main St., Bldg. 22
Reynoldsburg, OH 43068
614.644.4668
Kevin.Sohner@odh.ohio.gov

Kumud Srivastava
Mycobacteriology Division Director
Mississippi Public Health Laboratory
570 East Woodrow Wilson Drive
Jackson, MS 39216
601.576.7451
kumud.srivastava@msdh.state.ms.us

Cortney Stafford, MPH, MT (ASCP)
Laboratory Consultant
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.3420
fcx6@cdc.gov

Angela Starks, PhD
Branch Chief
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.3205
eog0@cdc.gov

Margaret Sweeney, BA, MS
Microbiologist IV
New Hampshire Public Health Laboratories
29 Hazen Drive
Concord, NH 03301-6504
603.271.4785
msweeney@dhhs.state.nh.us

Desmond Tan, BA
Bacteriologist III
William A. Hinton State Laboratory Institute
305 South Street
Jamaica Plain, MA 02130
617.983.6200
Desmond.Tan@state.ma.us

Julie Tans-Kersten, MS, BS MT(ASCP)
TB Laboratory Coordinator
Wisconsin State Laboratory of Hygiene
Communicable Disease Division
465 Henry Mall
Madison, WI 53706
608.263.5364
 julie.tanskersten@slh.wisc.edu

Becky Temple
Public Health Microbiologist III
Vermont Department of Health Laboratory
195 Colchester Avenue
PO Box 1125
Burlington, VT 05402-1125
802.657.4273
becky.temple@state.vt.us

Roy Tu’ua
Laboratory Manager
Missouri Public Health Laboratory
Tuberculosis Unit
101 N. Chestnut St.
Jefferson City, MO 65109
573.751.1115
Roy.Tuua@health.mo.gov

Frances Tyrrell, MPH, MT (ASCP) SM
Laboratory Consultant
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.5451
ilg9@cdc.gov

Kelsey Vellente
Senior Technician
Association of Public Health Laboratories
8515 Georgia Avenue, Suite 700
Silver Spring, MD 20910
240.485.2745
kelsey.vellente@aphl.org

Yvette Vergnetti, BS, MT (ASCP)
Public Health Microbiologist II
Alaska Division of Public Health Laboratory
TB Department
5455 Dr Martin Luther King Jr Avenue
Anchorage, AK 99507
907.334.2153
yvette.vergnetti@alaska.gov

Jane Voyles, BS
Laboratory Manager
Arkansas Department of Health
Public Health Laboratory
201 South Monroe
Little Rock, AR 72205
501.661.2448
jane.voyles@arkansas.gov
David Warshauer
PhD, D(ABMM)
Deputy Director, Communicable Diseases Division
Wisconsin State Laboratory of Hygiene
465 Henry Mall, Room 301
Madison, WI 53706
608.265.9115
david.warshauer@slh.wisc.edu

Stacy White, PhD
Supervisor, Mycobacteriology/Molecular Methods Research
Arizona Bureau of State Laboratory Services
Microbiology
250 N. 17th Ave
Phoenix, AZ 85007
602.364.0945
Stacy.White@azdhs.gov

Melissa Willby, PhD
Microbiologist
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.5479
ghx9@cdc.gov

Constance Williams, RN
Supervisory Nurse Coordinator
DC Department of Health
HAHSTA - Div. of STD & TB Control
899 N. Capitol St. NE, 4th Floor
Washington, DC 20002
202.698.4044
constance.williams2@dc.gov

Kelly Wroblewski, MT, ASCP, MPH
Director, Infectious Disease
Association of Public Health Laboratories
8515 Georgia Ave, Suite 700
Silver Spring, MD 20910
240.485.2728
kelly.wroblewski@aphl.org

Mitch Yakrus, MS, MPH
Microbiologist
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.639.1288
may2@cdc.gov

Monica Youngblood, MPH
Laboratory Consultant
CDC, DTBE/ Laboratory Branch
Atlanta, GA
404.718.2079
wsk9@cdc.gov

Rachel Zinner, BS, MS
Kentucky State Public Health Laboratory
100 Sower Blvd Suite 204
Frankfort, KY 40601
502.564.4446 (4423)
Rachel.Zinner@ky.gov