Salmonella Serotyping

Patricia Fields
National Salmonella Reference Lab
CDC

10th Annual PulseNet Update Meeting
April 5, 2006
What is *Salmonella* serotyping?

* The “first-generation” subtyping method
 - Established in 1929
 - Now the “first tier” subtyping for PulseNet

* Phenotypic characterization of strains based on the immunologic reactivity of two surface structures:
 - Lipopolysaccharide (O antigen)
 - Flagellin protein (H antigen)

* In *Salmonella*, includes species and subspecies identification
 - Isolates of different subspecies can have the same O and H antigens
Schematic Representation of *Salmonella* Serotype Antigens

Salmonella Typhimurium 4,5,12:i:1,2

O antigen → LPS

Flagella

H antigen

Salmonella Typhimurium 4,5,12:i:1,2

O antigen

LPS

Flagella

H antigen
Why is serotyping important?

- Basis for the US National *Salmonella* Surveillance System
 - About 35,000 isolates serotyped per year by SHDs
 - 50 years worth of data based on serotype

- Useful for epidemiologic classification of strains and for outbreak investigations
 - Strains of the same serotype, especially a rarer one, may be related
 - Serotype can correlates with disease or epidemiology
 - S. Typhi, other invasive serotypes
 - Subspecies IIIb serotypes common in reptiles

- An international “language”
Salmonella taxonomy

* Two species of *Salmonella*
 - *Salmonella enterica*
 - Its official!
 - Judicial Commission, Opinion 80. IJSEM 2005
 - *Salmonella bongori* (formerly subspecies V)

* *S. enterica* further divided into 7 subspecies
 - Approximately 99% of human isolates are subspecies I
 - Subspecies IV, IIIb, II, IIIa, VI (order of frequency in human isolates)
 - Subspecies VII recognized but not used for the purpose of serotype designation

* Species/subspecies typically determined by biochemical testing
Salmonella enterica subspecies

- Subspecies designated by taxonomic name or, more commonly for serotype designation, Roman numeral

<table>
<thead>
<tr>
<th>Roman Numeral</th>
<th>Subspecies Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>S. enterica subspecies enterica</td>
</tr>
<tr>
<td>II</td>
<td>S. enterica subspecies salmonae</td>
</tr>
<tr>
<td>IIIa</td>
<td>S. enterica subspecies arizonae</td>
</tr>
<tr>
<td>IIIb</td>
<td>S. enterica subspecies diarizonae</td>
</tr>
<tr>
<td>IV</td>
<td>S. enterica subspecies houtenae</td>
</tr>
<tr>
<td>VI</td>
<td>S. enterica subspecies indica</td>
</tr>
</tbody>
</table>

- Subspecies IIIa and IIIb originally described as the genus *Arizonae*
 - Still identified as “Arizona” by some automated ID systems
Differentiating *Salmonella* subspecies

Salmonella O antigen

* Outermost portion of lipopolysaccharide (LPS)

* Carbohydrate antigen

* Different sugars and different linkages between sugars produce the different antigens
Salmonella O Antigens

- Two types
 - O Group antigens
 - “Ancillary” O antigens

- O Group antigens
 - Most important for determining serotype
 - *rfb* region contains genes responsible for O group
 - Found in all *Enterobacteriaceae*

- Ancillary O antigens
 - Typically encoded by extra-chromosomal elements (bacteriophages, plasmids)
 - Found in specific O groups
 - Most can vary within a given serotype, so are less important for serotype determination
Salmonella O Serogroups

- 46 O serogroups
- O groups initially designated by capital letters
 - Ran out of letters … started using numbers
 - Now, all O Groups are designated by numbers
 - Letter designations still commonly used

<table>
<thead>
<tr>
<th>O Group (number designation)</th>
<th>O Group (letter designation)</th>
<th>Typical O antigens</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>2,12</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>4,12</td>
</tr>
<tr>
<td>7</td>
<td>C1</td>
<td>6,7</td>
</tr>
<tr>
<td>8</td>
<td>C2</td>
<td>6,8</td>
</tr>
<tr>
<td>9</td>
<td>D1</td>
<td>9,12</td>
</tr>
<tr>
<td>3,10</td>
<td>E1</td>
<td>3,10</td>
</tr>
<tr>
<td>13</td>
<td>G</td>
<td>13</td>
</tr>
</tbody>
</table>

These O groups represent about 97% of human isolates
Distribution of Salmonella O Groups

Subspecies determination is critical for serotype identification, particularly for “higher” O groups.

* Dendrogram taken from Whittam and Bumbaugh, Curr Opin Gen Dev 12:719-725 (2002)
Salmonella H antigen

- Flagellin, the flagellar filament
 - A protein antigen
 - Variation in the middle surface-exposed portion of the protein

- *Salmonella* is unique in having 2 different H antigens:
 - Phase 1/Phase 2
 - Phase 1 has a homolog in other enterics
 - Phase 2 gene is in a *Salmonella*-specific region of the genome
 - The 2 flagellins are coordinately expressed—one is off when other is on
H Antigens Designations

- 119 H antigens (Phase 1 & Phase 2)
 - Typically designated by lower case letters
 - a; b; c; d; e,h; e,n,x; etc
 - 1,2; 1,5; 1,7; *et al* are the notable exceptions
 - Ran out of letters ... started using numbered z’s
 - Z₄, Z₆, Z₁₀, Z₁₅, ... Z₈₉
 - Typically, *no* antigenic relationships between “z” antigens

- Some H antigens are antigenically related
 - Related antigens referred to as “complexes”
 - Typically, have one antigen in common plus secondary antigens
 - 1 complex: 1,2; 1,5; 1,6; 1,7, etc.
 - G complex: g,m; g,m,s; f,g,t; f,g,s; etc.
Designation of *Salmonella* Serotypes

- Designated according to the conventions of the Kauffmann-White Scheme
 - 2,541 serotypes in 2002
 - 10-20 new recognized serotypes each year
 - Confirmed at CDC and IP
 - Subspecies I serotypes: submitting lab gets to name the serotype

- Kauffmann-White Scheme maintained by Institut Pasteur
 - Published every five years
 - Updated annually (last updated 2002 …)
 - .pdf and MS Access versions available from the CDC
Subspecies I serotypes are designated by a name and a formula

Salmonella Typhimurium

“Group O:4” or “Group B”

<table>
<thead>
<tr>
<th>Subspecies</th>
<th>O antigen</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4, [5], 12</td>
<td>i : 1,2</td>
<td></td>
</tr>
</tbody>
</table>

“[5]” means O antigen 5 may or may not be present.

<table>
<thead>
<tr>
<th>Subspecies</th>
<th>O antigen</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4,5,12:i:1,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>4,12:i:1,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Salmonella Typhimurium var. O 5 -
or
Salmonella Typhimurium var. Copenhagen
Subspecies II through VI serotypes are designated by formula only

“Group O:48” or “Group Y”

IV 48 : g,z51 : - *

Subspecies O Phase 1 “monophasic” antigen

* Salmonella IV 48:g,z51:- was formerly known as Salmonella Marina.
Examples of Serotype Designations

- *Salmonella enterica* subspecies *enterica*
 - serotype Typhimurium
 - *Salmonella enterica* serotype Typhimurium
 - *Salmonella* ser. Typhimurium
 - *Salmonella* Typhimurium

- *Salmonella enterica* subspecies *enterica*
 - serotype Typhi
 - *Salmonella enterica* serotype Typhi
 - *Salmonella* ser. Typhi
 - *Salmonella* Typhi

- *Salmonella enterica* subspecies *houtenae*
 - serotype 48:g,z51:-
 - *Salmonella enterica* serotype IV 48:g,z51:-
 - *Salmonella* IV ser. 48:g,z51:-
 - *Salmonella* IV 48:g,z51:-
Monophasic Serotypes and Monophasic Variants

Monophasic: the state of having or expressing only one flagellar antigen when two flagellar antigens might be expected

Monophasic variant: variants of serotypes that are typically expected to have two flagellar antigens

* Some serotypes are “naturally” monophasic
 - No second phase flagellar antigen
 - Specific subspecies I serotypes: S. Typhi, S. Enteritidis, S. Berta, others
 - Most subspecies IIIa and IV serotypes

* Monophasic variants lack either of the two flagellar antigens
 - I 4,5,12:i:- (likely variant of S. Typhimurium)
 - I 9,12:l,z28:- (likely variant of S. Javiana)
 - I 4,5,12:-:1,2 (could be a variant of Typhimurium, Heidelberg, Saintpaul, Paratyphi B, …)
Serotype Variants: Unable to detect all serotype antigens

* Subspecies I: unable to give a “name” when all antigens not detected, but can still identify by a formula

* Monophasic variants
 - $\textit{Salmonella I 4,5,12:i:-}$
 - $\textit{Salmonella I 4,12:i:-}$
 - $\textit{Salmonella I 4,5,12:b:-}$

* Nonmotile variants
 - $\textit{I 4,5,12:nonmotile}$ ($\textit{Salmonella I 4,5,12:-:-}$)

* Rough strains (no longer express O antigen)
 - $\textit{Salmonella I Rough:i:1,2}$
 - $\textit{Salmonella I Rough:nonmotile}$

* Mucoid strains (capsule blocks O antigen detection)
 - $\textit{Salmonella I O Mucoid:i:1,2}$

All of these strains are fully serotyped
PulseNet: Keeping the serotyping lab on its toes

PFGE pattern can be indicative of serotype

PulseNet: Keeping the serotyping lab on its toes

PFGE-XbaI

Salmonella Enteritidis
l 9,12:g,m:-

Salmonella Berta
l 9,12:[f],g,[t]:-
PulseNet: Keeping the serotyping lab on its toes

* PFGE pattern can be indicative of serotype

<table>
<thead>
<tr>
<th>Serotype</th>
<th># isolates 1999-2003</th>
<th>Ssp</th>
<th>O Group</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baildon</td>
<td>109</td>
<td>I</td>
<td>9,46</td>
<td>a</td>
<td>e,n,x</td>
</tr>
<tr>
<td>Lomalinda</td>
<td>59</td>
<td>I</td>
<td>9</td>
<td>a</td>
<td>e,n,x</td>
</tr>
<tr>
<td>Oranienburg</td>
<td>2922</td>
<td>I</td>
<td>7</td>
<td>m,t</td>
<td>-</td>
</tr>
<tr>
<td>Othmarschen</td>
<td>95</td>
<td>I</td>
<td>7</td>
<td>g,m,t</td>
<td>-</td>
</tr>
</tbody>
</table>

* But not always

<table>
<thead>
<tr>
<th>Serotype</th>
<th># isolates 1999-2003</th>
<th>Ssp</th>
<th>O Group</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saintpaul</td>
<td>2858</td>
<td>I</td>
<td>4</td>
<td>e,h</td>
<td>1,2</td>
</tr>
<tr>
<td>Reading</td>
<td>416</td>
<td>I</td>
<td>4</td>
<td>e,h</td>
<td>1,5</td>
</tr>
<tr>
<td>Chester</td>
<td>149</td>
<td>I</td>
<td>4</td>
<td>e,h</td>
<td>e,n,x</td>
</tr>
<tr>
<td>Sandiego</td>
<td>632</td>
<td>I</td>
<td>4</td>
<td>e,h</td>
<td>e,n,z15</td>
</tr>
</tbody>
</table>
PulseNet: Helping solve old questions

Salmonella Paratyphi B

vs

Salmonella Paratyphi B var. L (+) tartrate+ (aka var. Java)

- Paratyphi B is invasive, typhoidal
- Paratyphi B var. L (+) tartrate + is less invasive, GI pathogen
- To date, tartrate+ vs tartrate- phenotype has been the only way to differentiate
- Likely that these two variants are not very accurately tracked in the national surveillance database
<table>
<thead>
<tr>
<th>Serotype</th>
<th>Tartrate Fermentation</th>
<th>Tartrate PCR</th>
<th>sopE PCR</th>
<th>avrA PCR</th>
<th>Isolate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>00-0306</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>04-0421</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>02-0531</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>+, delayed</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>05-0051</td>
</tr>
<tr>
<td>I 4,5,12:b:- var. L(+) tartrate +</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>00-0216</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>96-0583</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>98-0328</td>
</tr>
<tr>
<td>I 4,5,12:b:- var. L(+) tartrate +</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>97-0146</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>03-0682</td>
</tr>
<tr>
<td>I 4,5,12:b:- var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>00-0267</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>01-0078</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>496</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>00-0391</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>04-0137</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>04-0615</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>04-0137</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>AM09823</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>AM01181</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>AM06652</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>AM11088</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>01-0290</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>01-0586</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>02-0234</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>00-0301</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>05-0044</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>05-0049</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>AM13085</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>04-0126</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>04-0332</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>00-0171</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>02-0104</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>03-0451</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>01-0399</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>00-0043</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>01-0516</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>03-0147</td>
</tr>
<tr>
<td>Paratyphi B var. L(+) tartrate +</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>00-0295</td>
</tr>
</tbody>
</table>

Disclaimer: PFGE done by *Salmonella* reference lab and NOT PulseNet!
The Future: NextGen Serotyping Methods

- Serotyping is easy
 - Preparing serotyping reagents in hard
 - Hundreds of antisera required
 - Typically use rabbit antisera—multiple absorptions to get desired specificity

- Solution: Use DNA-based methods to ID serotype
 - Base on genes responsible for serotype to make it compatible with serotypes determined by traditional methods

- To date, have probes for about 20 O groups and 25 H antigens
 - Currently adapting to the Luminex platform
The National *Salmonella* Reference Lab

* Linda Gheesling
* Lonnie Bryant
* Sarah Duda
* Matt Mikoleit
* Collette Fitzgerald
* John McQuistion
* Marcus Collins