Between Method/Laboratory MSMS Analyte Harmonization Using CDC Quality Control Materials

Mary A. Seeterlin1, E. Stanley1, R. Grier2, K. Cavanagh1, P. Rinaldo3, V. DeJesus4

1. Michigan Department of Community Health, Lansing, Michigan,
2. Detroit Medical Center, Children’s Hospital of Michigan,
3. Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota,
4. Centers for Disease Control and Prevention, Atlanta, GA.
2009 Directive

- Validate PerkinElmer NeoBase™ Non-derivatized MSMS Kit on Waters TQD
 - Previously PerkinElmer NeoGram® Derivatized MSMS Kit on SCIEX 2000
- Evaluate cutoffs with respect to R4 target cutoff ranges
Validation Assessments

- Precision
- Linearity
- Accuracy
 - NeoBase™ Kit Controls
 - CDC Quality Control Samples
 - Cutoffs: NeoGram-NeoBase Method Comparison
Method Comparison Analysis

NeoBase (μmol/L) vs. NeoGram (μmol/L)

- Platelet (PT) Samples
- CDC QC Samples
- 332 Normal Patient samples
- High and Low Kit Controls
- True Positive samples

Slope: 0.775
Intercept: -1.033
R: 0.9862

Methionine (Met)
Methionine (Met)

NeoBase ≈ 0.775 * NeoGram

Slope: 0.775
Intercept: -1.033
R: 0.9862
Methionine (Met)

Method Comparison Analysis

![Graph showing method comparison analysis for Methionine (Met). The graph plots NeoBase (µmol/L) against NeoGram (µmol/L). The graph includes data points and a trend line. The inset box provides the slope, intercept, and R value.]

- Slope: 0.731
- Intercept: 1.743
- R: 0.9992

Averaged CDC QC Values
NeoGram Met Cutoff (74)
NeoBase Met Cutoff (56)

Method Comparison Analysis

Methionine (Met)

Slope: 0.731
Intercept: 1.743
R: 0.9992
Alternate (Quantitative) Method Comparison

X Method: NeoGram
Y Method: NeoBase

Scatter Plot

Regression Analysis

<table>
<thead>
<tr>
<th></th>
<th>Deming</th>
<th>Regular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>0.731</td>
<td>0.731</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.743 (-0.832 to 4.318)</td>
<td>1.830 (-0.744 to 4.405)</td>
</tr>
<tr>
<td>Std Err Est:</td>
<td>4.996</td>
<td>4.996</td>
</tr>
</tbody>
</table>

95% Confidence Intervals are shown in parentheses

Medical Decision Point Analysis

<table>
<thead>
<tr>
<th>X Method MDP</th>
<th>Y Method Pred. MDP</th>
<th>95% Conf. Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>55.9</td>
<td>53.8 to 57.9</td>
</tr>
</tbody>
</table>
Validation Goals

Evaluate Cutoffs

- **NeoGram/NeoBase** Method Comparison
 - All MSMS analytes cutoffs evaluated

- **Region 4** Cutoff Range Comparison:
 - Could this Method Comparison technique work for Between Laboratory Cutoff Comparison?
Cutoffs

Cutoff evaluation with respect to Region 4 target cutoff ranges...

- **Why** do some of our cutoffs *not* coincide with the R4 target cutoff range?

 - Differences in the Methods
 - Extraction technique
 - Instrumentation
 - Internal Standard
 - Calibration Technique
 - Standard Calibration Material Use
 - (Traceable to National Standards)

- Cutoffs in question are not clinically valid
Target Range

MI NeoGram Cutoff = 74
MI NeoBase Cutoff = 56
Better?

Target Range
Target Range

Equivalent!

Better?
Target Range:
Succinylacetone (SA)

NeoBase \approx 0.144 \times CDC
NeoBase \approx 0.247 \times \text{Mayo}
Alternate (Quantitative) Method Comparison

X Method: Mayo Medical Lab
Y Method: MI NeoBase

Regression Analysis

<table>
<thead>
<tr>
<th>Deming</th>
<th>Regular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>0.247 (0.242 to 0.251)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.07339 (0.05085 to 0.09593)</td>
</tr>
<tr>
<td>Std Err Est</td>
<td>0.03732</td>
</tr>
</tbody>
</table>

95% Confidence Intervals are shown in parentheses

Medical Decision Point Analysis
Calculated by Deming Regression (R>=0.9)

<table>
<thead>
<tr>
<th>X Method MDP</th>
<th>Y Method Pred. MDP</th>
<th>95% Conf. Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>5.0</td>
<td>1.31</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.32</td>
</tr>
</tbody>
</table>
EP Evaluator®
Michigan Department of Community Health – Newborn Screening

Alternate (Quantitative) Method Comparison

X Method: Mayo Medical Lab
Y Method: MI NeoBase

Scatter Plot

Regression Analysis

<table>
<thead>
<tr>
<th></th>
<th>Deming</th>
<th>Regular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>0.247 (0.242 to 0.251)</td>
<td>0.247 (0.242 to 0.251)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.07339 (0.05085 to 0.09593)</td>
<td>0.07358 (0.05104 to 0.09612)</td>
</tr>
<tr>
<td>Std Err Est</td>
<td>0.03732</td>
<td>0.03732</td>
</tr>
</tbody>
</table>

95% Confidence Intervals are shown in parentheses

Medical Decision Point Analysis
Calculated by Deming Regression (R>=0.9)

<table>
<thead>
<tr>
<th>X Method MDP</th>
<th>Y Method Pred. MDP</th>
<th>95% Conf. Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>1.31</td>
<td>1.30</td>
</tr>
</tbody>
</table>

Mayo SUAC Cutoff: Cutoff set to 1.0 (99.99%ile = 0.82)
Succinylacetone (SA)

NeoBase ≈ 4.051 * Mayo

Slope: 4.051
Intercept: -0.29731
R: 0.9984
Succinylacetone (SA)

TP TYR1: SUAC

Mayo = 35.2 µmol/L

MI Neobase = 8.76 µmol/L

Mayo = 4.051 * Neobase – 0.29731

Calculated Mayo = 35.2 µmol/L
NeoGram Cutoff = 0.41

Target Range
Glutaryl carnitine (C5DC)

NeoGram \approx 5.168 \times \text{Mayo}
Target Range

- MI Equivalent Cutoff = 0.765
- NeoBase C5DC 99.99\%tile = 0.732
- NeoGram Cutoff = 0.41
- MI TP GAI: C5DC = 0.46
- Mayo Cutoff = 0.15

C5DC + C10-OH
Target Range

MI Cutoff = 68
Arginine (Arg)

NeoGram \approx 3.550 \times \text{Mayo}

MI = 107 \mu\text{mol/L}

NeoGram = 150

TP ARG

Mayo = 29.5 \mu\text{mol/L}
Alternate (Quantitative) Method Comparison

X Method: Mayo Medical Lab
Y Method: MI NeoGram

Regression Analysis

<table>
<thead>
<tr>
<th></th>
<th>Deming</th>
<th>Regular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>3.551 (3.246 to 3.857)</td>
<td>3.319 (3.023 to 3.615)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-4.0952 (-12.2819 to 4.0915)</td>
<td>1.1319 (-6.8029 to 9.0668)</td>
</tr>
<tr>
<td>Std Err Est</td>
<td>14.0499</td>
<td>13.6177</td>
</tr>
</tbody>
</table>

95% Confidence Intervals are shown in parentheses.

Medical Decision Point Analysis

Calculated by Deming Regression (R >= 0.9)

<table>
<thead>
<tr>
<th></th>
<th>X Method MDP</th>
<th>Y Method Pred. MDP</th>
<th>95% Conf. Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>84.7</td>
<td>80.2</td>
</tr>
</tbody>
</table>

Mayo Arg Cutoff
Equivalent NeoGram Arg Cutoff
MI Cutoff = 68
Mayo Cutoff = 25
MI Equivalent Cutoff = 85

Target Range

Cutoff marker size is proportional to the number of labs using the same value.
Free carnitine (C0)

NeoGram ≈ 1.781 * Mayo
Sample Exchange - 6 months.

Free carnitine (C0)

NeoBase ≈ 1.781 * Mayo
Malonylcarnitine (C3DC)

NeoBase \approx 0.096 \times \text{Missouri}
MI NeoBase \(\approx 0.096 \times \text{Missouri} \)

\[
\text{MO C3DC} = 5.75 \mu\text{mol/L} \\
\text{MI C3DC} = 0.60 \mu\text{mol/L} \\
\text{Calculated MI} = 0.60 \mu\text{mol/L}
\]
Conclusions

Harmonization Using CDC Quality Control Materials:

- Allows Harmonization of Cutoffs
- Allows Harmonization of TP Analyte Concentrations
Conclusions

- Allowed for an accurate comparison of Cutoff Values between Michigan and Mayo.

- Identified that C16OH, C0, Cit, Cit/Arg, and Met cutoffs required correction.
Acknowledgements:

MI NBS Team – Eleanor Stanley
Dr. Robert Grier – CHMMC, BGL
Patrick V. Hopkins – Missouri
Marie-Thérèse Berthier, Quebec – NeoBase
Sheila Weiss/Bill Hoffman – Washington
Dr. Victor DeJesus/CDC Quality Assurance Program
Dr. Piero Rinaldo/David McHugh - Region 4 Collaborative
NeoBase (μmol/L)

CDC (μmol/L)

Slope 0.986
Intercept -0.005
R 0.9999
CDC equivalent uMol/L