Complications of Prematurity and Newborn Screening Test Performance

Kelli K Ryckman
Department of Pediatrics
University of Iowa

Coauthors: Stanton L. Berberich, Oleg A. Shchelochkov, Sara Copeland, Noah Ehinger, Stanley D. Poole, Jeff Reese, John M Dagle and Jeffrey C. Murray
Preterm Birth (gestation <37 weeks)

- ~12% of infants in US are born preterm
- 34 – 36 weeks: high numbers with short-term morbidities
- <33 weeks: biggest impact on mortality and long term outcomes

Premature infants are at increased risk for:

- Respiratory distress
- Jaundice
- Sepsis
- Developmental origins of adult disease
Preterm and Low Birth Weight Infants have:
- Higher false positive rates on NBS
- Higher 17-OHP
- Higher Amino Acids (generally)
- Lower medium and long chain acylcarnitines (generally)
- Lower TSH

<table>
<thead>
<tr>
<th>Gestational Age</th>
<th>CAH</th>
<th>MS/MS</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-32 wk</td>
<td>8.9%</td>
<td>15.2%</td>
<td>22.9%</td>
</tr>
<tr>
<td>32-36 wk</td>
<td>4.3%</td>
<td>1.7%</td>
<td>6.8%</td>
</tr>
<tr>
<td>37-42 wk</td>
<td>0.2%</td>
<td>0.3%</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

Data from Iowa: 2004-2009, 221,787 newborns
Why are levels different in premies?

- Fetal Stress/Sickness
 - Immature adrenal function
 - Immature kidney function
 - Higher levels of adrenocorticotropic hormone

- But...are all premies the same?
 - “Healthy” premies still have higher levels (of most analytes) compared to term babies but still lower than “sick” premies (Murphy et al., 1983)

- Are all “sick” premies the same?
 - Not all “sick” premies have “abnormal” levels
Solutions...

- CLSI recommends screening preterm infants
 - At birth
 - 48-72 hours after birth
 - 28 days of life

- Gestational age/Birth weight cutoffs?

- Identify subsets of premature infants for additional screening?
Morbidities of Preterm Birth

Bronchopulmonary Dysplasia (BPD)
Respiratory Distress Syndrome (RDS)

Intraventricular Hemorrhage (IVH)

Brain

Patent Ductus Arteriosus (PDA)

Cardiac

Lung

Retinopathy of Prematurity (ROP)

Prematurity Study (Dr. Jeff Murray)
762 infants born 22-36 weeks
NBS collected 24-72 hours after birth
No transfusion
Examined: 17-OHP, TSH, IRT, GALT, 13 amino acids and 36 acylcarnitines
Assessed false positive rate for each test

Infection

Necrotizing Enterocolitis (NEC)

Gastrointestinal

Ophthalmology

Sepsis

Patent Ductus Arteriosus

Cardiac

Intraventricular Hemorrhage

Brain
Respiratory Distress Syndrome (RDS)

<table>
<thead>
<tr>
<th>RDS</th>
<th>False Positive CAH (n=64)</th>
<th>False Positive CH (n=4)</th>
<th>False Positive MS/MS (N=17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>6.3%</td>
<td>1.0%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Yes</td>
<td>12.0%</td>
<td>0.8%</td>
<td>3.5%</td>
</tr>
<tr>
<td>p-value</td>
<td>0.01</td>
<td>1.0</td>
<td>0.21</td>
</tr>
</tbody>
</table>

* P < 0.05
** P < 1x10^-4
RDS and TSH

- Thyroid stimulating hormone stimulates lung surfactant production

- Previous studies did not find an association with RDS and TSH (Romagnoli et al. 1982 and Tanaka et al. 2007)

- We observe a decrease in TSH in infants with RDS which is consistent with the hypothesis that preterm infants deficient in TSH are more likely to develop RDS
Patent Ductus Arteriosus (PDA)

- **Amino Acids**
 - Short Chain
 - Medium Chain
 - Long Chain

- **GALT**
- **IRT**
- **17-OHP**
- **TSH**

False Positive MS/MS (N=17)

<table>
<thead>
<tr>
<th>PDA</th>
<th>False Positive MS/MS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>2.2%</td>
</tr>
<tr>
<td>Yes</td>
<td>3.7%</td>
</tr>
<tr>
<td>p-value</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Patent Ductus Arteriosus

http://www.nhlbi.nih.gov/health/health-topics/topics/pda/
PDA and Amino Acids

- Result of TPN?

- Metabolic patterns may be used to predict or inform on the etiology of a disease state

- Branch chained amino acids (LEU and VAL) associate with coronary artery disease (Huang et al., 2011)

- Case report of a women with phenylketonuria (PKU) that had a term infant with a PDA
Do these amino acids contribute to PDA pathophysiology?

Isolated ductus arteriosus was examined term born mice by cannulated, pressurized vessel myography.

Vascular response to L-valine, L-methionine, L-phenylalanine and L-leucine under conditions that simulate newborn oxygen tension.
None of the amino acids elicited a response on the mouse ductus.
Conclusions

- Complications of prematurity do not seem to affect NBS test performance.

- There are distinct metabolic profiles identified for several complications including PDA and RDS.

- More studies in the mouse are underway to further examine functionality of these metabolites on PDA.
Acknowledgements

University of Iowa
Jeffrey Murray
John Dagle
Kristi Borowski
Oleg Shchelochkov
Susan Berends
Farah Alul
Elwood Cook

State of Iowa Hygienic Laboratory
Stan Berberich
Dari Shirazi
Frank Delin

Vanderbilt University
Jeffrey Reese
Stanley Poole
Noah Ehinger

Health Resources and Services Administration
Sara Copeland

Funding
NICHD (K99 HD-065786, R01 HD-52953, R01 HD-57192)
March of Dimes (1-FY05-126 and 6-FY08-260)