The Axis of Contamination

Dextrose and Amino Acids

False Positives due to TPN for VLBW Infants

Donald H. Chace, PhD, MSFS, FACB
The Center for Research, Education and Quality
Pediatrics Medical Group
Sunrise, Florida
The title I would like to use…

FAST FOOD FOR PREEMIES
* Hypothesis:
 * Extremely high concentrations of amino acids in DBS are **not** due to a biochemical defect.

 * False Positive Results are **in part** due to mixing (contamination) of IV feeds (total parenteral nutrition solutions) that contain very high concentrations of amino acids.

 * A marker for contamination by TPN would help identify infants whose DBS sample is invalid / unacceptable and reduce presumptive positives.
 * Would not reduce repeat sampling in the short term.
 * Reduce repeat sampling in the long term by identifying laboratories that do not collect samples properly.
Brief History

* High FP rate for premature infants historically.
 * even with better analytical instruments and methods.

* False Positives characterized by very high Leu/Ile, Phe, Met, Ala but not Tyr.
 * Interpretation guidelines in some labs act on milder elevations of Tyr and/or Met but not on much higher concentrations of Met when Leu/Phe/Ala are also high.

* Clinical trial of 100 premature infants with multiple collections points on TPN did not have these very abnormal profiles.

* Examination of all very high AA profiles revealed markers in the acylcarnitine profiles that were not acylcarnitines.
 * Process of elimination indicated dextrose
 * Mass spectra indicated a carbohydrate
 * Mayo suggested dextrose in an abstract at an SIMD meeting.
What is TPN?

- Source of Energy
 - DEXTROSE (D-glucose)
 - 5, 10 and 12.5% (% = g per 100mL, dL)

- Source of Protein
 - Free L-Amino Acids
 - 2 – 4 g per kg per day
 - Proprietary mix of AA

- Isotonic Saline
 - Salts, minerals etc...
Unusual m/z values in the AC-BE Profiles (Pre 85)

* Nearly all false positive results with high amino acid concentrations had the following markers in the acylcarnitine profile:

\[m/z: \quad 325 \quad 399 \quad 473 \]

* Dextrose suspected based on
 * Product ion profile had fragmentation profiles similar to carbohydrates.
 * Eliminated other components of TPN

* Conclusive evidence for dextrose not easily obtained because:
 * Analysis of pure dextrose did not show markers
 * (subsequently found that preparation in same manner of a DBS did show markers)
 * m/z values did not add up to dextrose (MW = 260)
Pre – 85 (AC profile)
Dextrose – *(prepared in same manner as DBS – butyl esterification)*
Solution: Isotope Labeled D-glucose (m/z 180)

Isotope Labeled D-glucose (m/z 180)

Dextrose (MS scan)

13C$_6$H$_{12}$O$_6$ 186 Da

13C$_6$-Dextrose (MS scan)

Shift of fragments by 12 Daltons

Can only occur if “2” dextrose molecules

Found a dextrose monomer at m/z 237
<table>
<thead>
<tr>
<th>m/z</th>
<th>Dx</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>Formula</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>237</td>
<td>Dex</td>
<td>Butyl</td>
<td>-</td>
<td>-</td>
<td>$[C_{10}H_{21}O_6]^+$</td>
<td>butyl ether</td>
</tr>
<tr>
<td>325</td>
<td>Dex</td>
<td>Dex-H$_2$O</td>
<td>-</td>
<td>-</td>
<td>$[C_{12}H_{21}O_{10}]^+$</td>
<td>Dimer – water</td>
</tr>
<tr>
<td>399</td>
<td>Dex</td>
<td>Dex</td>
<td>Butyl</td>
<td>-</td>
<td>$[C_{16}H_{31}O_{11}]^+$</td>
<td>Dimer + butyl ether</td>
</tr>
<tr>
<td>417</td>
<td>Dex</td>
<td>Dex</td>
<td>Butyl</td>
<td>-</td>
<td>$[C_{16}H_{33}O_{12}]^+$</td>
<td>237 + 180</td>
</tr>
<tr>
<td>473</td>
<td>Dex</td>
<td>Dex</td>
<td>Butyl</td>
<td>Butyl</td>
<td>$[C_{20}H_{41}O_{12}]^+$</td>
<td>2 x 237 − H$^+$</td>
</tr>
</tbody>
</table>

Butyl ethers with dextrose!

Monomers, dimers and trimers – Oh My!
DEXTROSE IDENTITY CONFIRMED

BUT WAS THE CRIME SCENE CONTAMINATED?
Classic High FP from a Preemie DBS

- **Internal Standards**

- Acylcarnitine Profile (Pre 85)
 - C3
 - C4
 - C5
 - C14
 - C16
 - C18:1
 - C18

- Amino Acid Profile (NL 102)
 - Ala
 - Leu+Ile
 - Met
 - Phe
 - Tyr

+Prec (85.00): Exp 2, 0.479 to 1.148 min from Sample 1 (Sciex-5) of ar2010023660.wiff (Ion Spray)

Max. 2.3e4 cps.

+NL (102.10): Exp 3, 0.513 to 1.182 min from Sample 1 (Sciex-5) of ar2010023660.wiff (Ion Spray)

Max. 1.8e6 cps.
DBS spiked with TPN for Comparison

1:40 TPN/Blood (TPN 12.5% Dex, 2.5 g/kg/day amino acids)

Internal Standards

Internal Standards

Acylcarnitine Profile (Pre 85)

Amino Acid Profile (NL 102)

1:40 dilution of TPN solution in Blood before making DBS
Dextrose Marker Quantification – Amino Acid Relationship

Can I use data in my interpretation?

Is it linear?

What is the detection limit?

Is there a direct relationship between Dextrose and Amino Acids?
Dextrose Blood Concentration vs Sum of Dextrose Marker Pseudo-concentrations

Dextrose Marker Quantification

Note:
Diluted TPN solutions

- 10%
- 12.50%
- 5%
- Control (0)
- Linear (10%)
- Linear (12.50%)
- Linear (5%)
Methionine blood Concentrations (a representative marker of amino acids)

Methionine Quantification

Note:
Diluted TPN solutions

- 3 g/kg/day
- 2.5 g/kg/day
- 4 g/kg/day
- Control (0)

 Linear (3 g/kg/day)
 Linear (2.5 g/kg/day)
 Linear (4 g/kg/day)

Met (umol/L)

endogenous

Met added umol/L
A bit more data....

Note that a 1:80 contamination increases Leu+Ile above most cutoffs and Met and Phe are borderline. Tyr remains normal.

1:80 is a detectable dex marker concentration.

Dextrose / Amino Acids correlate with calculated concentrations in TPN.
* Molar Ratios

* As the TPN contamination increases, the molar ratios of amino acids approach a signature TPN profile rather than a normal endogenous profile

* Reducing FP for PKU via an elevated Phe/Tyr ratio does not work.
 * As published – a secondary ratio (Phe/Leu) is necessary to rule out PKU in preemies. These results confirm why.

<table>
<thead>
<tr>
<th>3.0 g/kg</th>
<th>Phe/Tyr</th>
<th>Phe/Leu</th>
<th>Leu/Phe</th>
<th>Met/Phe</th>
<th>Leu/Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endogenous</td>
<td>1.12</td>
<td>0.35</td>
<td>2.86</td>
<td>0.39</td>
<td>0.41</td>
</tr>
<tr>
<td>1:5 saline/endo</td>
<td>1.08</td>
<td>0.35</td>
<td>2.88</td>
<td>0.38</td>
<td>0.41</td>
</tr>
<tr>
<td>1:80</td>
<td>2.48</td>
<td>0.22</td>
<td>4.50</td>
<td>0.53</td>
<td>1.15</td>
</tr>
<tr>
<td>1:5</td>
<td>7.26</td>
<td>0.20</td>
<td>5.00</td>
<td>0.68</td>
<td>2.05</td>
</tr>
</tbody>
</table>
Approach for use in the NBS lab...

- Verify markers on your instrument...
 - Ionization efficiency of instruments vary thus the three markers may also vary in relative intensity
 - It is why the sum of the markers was used in the study

- An exact determination of the increase concentration of amino acids cannot be made based on the dextrose marker sum.
 - It can be approximated based on information of what was given to infant.

- Further study in ongoing in a 1000 premature infant clinical trial where the marker is measured at 5 different time points.
Conclusions

* Detection of dextrose markers together with elevated amino acids indicate that a DBS was contaminated by TPN solution.
 * Profile does not reflect infants metabolism

* Higher concentrations of TPN contamination more closely reflect the TPN solution.

* It is likely that dextrose markers may be more frequent in certain collection facilities/nurseries.
 * An opportunity to revisit collection procedures

* False positive rates reduced. Short term follow-up / repeat sample increased. Long term follow up /repeat sample reduced with improved collection.
Tandem mass spectrometric identification of dextrose markers in dried-blood spots from infants receiving total parenteral nutrition

Donald H. Chace a,*, Victor R. De Jesús b, Timothy H. Lim b, W. Harry Hannon b, Alan R. Spitzer a

a Pediatric Analytical, The Pediatric Center for Research, Education and Quality, Pediatric Medical Group, Inc., 1301 Concord Terrace, Sunrise, FL 33323, USA
b Newborn Screening Quality Assurance Program, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Mail Stop F-19, Atlanta, GA 30341, USA

Detection of TPN contamination of dried blood spots used in newborn and metabolic screening and its impact on quantitative measurement of amino acids

Donald H. Chace a,*, Victor R. De Jesús b, Timothy H. Lim b, W. Harry Hannon b, Reese H. Clark a, Alan R. Spitzer a

a The Pediatric Center for Research, Education and Quality, Pediatric Medical Group, Inc., 1301 Concord Terrace, Sunrise, FL 33323, USA
b Newborn Screening Quality Assurance Program, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Mail Stop F-19, Atlanta, GA 30341, USA
Evidence Suggest Markers are Present in UNDERIVATIZED METHOD USING HYDRAZONE

Hydrazine derivatizes succinylacetone and...

New Markers at m/z 177,195,339,357

This crime (not doing butylesters) is under investigation!

PS – if you do butyl esterification and hydrazine you get even more markers! Just what we need in our profiles!
AMERICA’s MOST Wanted (Scientists at the CDC)

Partners in Crime Research – The Line-Up spot check