Ochrobactrum anthropi, Klebsiella oxytoca, and Stenotrophomonas maltophilia: What do we do with these?!

Ginette Dobbins
Minnesota Department of Health
Public Health Laboratory
Background

February 2011

• An infection preventionist from a local hospital contacted Minnesota Department of Health (MDH) epidemiologists about a cluster of 4 patients with *Ochrobactrum anthropi (OA)* bacteremia

• All patients were from the same surgical floor

• MDH epidemiologists initiated an investigation and notified PFGE

• Additional bacterial species were identified from the original patients by the reporting hospital
 - *Klebsiella oxytoca (KO)* and *Stenotrophomonas maltophilia (SM)*
All Positive Blood Cultures (n=35) for
K. oxytoca (KO), *O. anthropi* (OA), and/or
S. maltophilia (SM) for Case-Patients

<table>
<thead>
<tr>
<th>Number of Blood Cultures</th>
<th>Week and Month</th>
<th>Week and Year of Culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oct</td>
<td>2010</td>
</tr>
<tr>
<td>2</td>
<td>Nov</td>
<td>2010</td>
</tr>
<tr>
<td>3</td>
<td>Dec</td>
<td>2010</td>
</tr>
<tr>
<td>4</td>
<td>Jan</td>
<td>2010</td>
</tr>
<tr>
<td>5</td>
<td>Feb</td>
<td>2010</td>
</tr>
<tr>
<td>6</td>
<td>Mar</td>
<td>2011</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Klebsiella oxytoca

- Aerobic Gram negative rod
- Formerly *Aerobacter sp.*
- Ubiquitous in nature
- *Klebsiella spp.* Responsible for 8% of nosocomial infections in the US and Europe
- Tends to colonize mucosal membranes, but can colonize anywhere
Ochrobactrum anthropi

- Aerobic Gram negative rod
- Formerly *Achromobacter* sp.
- Common soil organism
- Becoming increasingly common as an opportunistic and nosocomial infection
- Can be found in indwelling medical devices like catheters and drainage tubes
Stenotrophomonas maltophilia

- Aerobic Gram negative rod
- Formerly *Pseudomonas sp.* and *Xanthomonas sp.*
- Commonly found in aqueous environments
- Increasingly common as an opportunistic and nosocomial infection
- Multi-drug resistant
- Can colonize breathing tubes, urinary catheters, and the respiratory tract
PFGE testing

• MDH Microbiology lab received the first OA and KO isolates from the hospital in late February
 – SM isolates received in early March

• Lab personnel did a literature search for PFGE protocols for each organism
 – PulseNet summary of PFGE for other organisms had protocols for KO and SM
 – Found several journal articles with PFGE protocols for OA
Initial trial – KO and OA

K. oxytoca and *O. anthropi*

KO and OA samples were initially run with the *Salmonella* PulseNet protocol.
Ochrobactrum anthropi trials

Salmonella

Listeria

GAS - fast

Staph - fast

B. pertussis

XbaI SpeI

XbaI SpeI

XbaI SpeI

XbaI SpeI

XbaI SpeI
Initial trial - SM

Routine Salmonella S. maltophilia

SM samples were initially run with the Salmonella PulseNet protocol
Final protocols

<table>
<thead>
<tr>
<th>Organism</th>
<th>Agarose plug casting</th>
<th>Enzymes (1<sup>st</sup> & 2<sup>nd</sup>)</th>
<th>Initial and final switch times</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. oxytoca</td>
<td>PN E. coli protocol *</td>
<td>XbaI, Spel</td>
<td>2.2 s and 64.0 s (PN Salmonella)</td>
</tr>
<tr>
<td>O. anthropi</td>
<td>PN Listeria protocol</td>
<td>Spel, XbaI</td>
<td>2.2 s and 64.0 s (PN Salmonella)</td>
</tr>
<tr>
<td>S. maltophilia</td>
<td>PN E. coli protocol</td>
<td>XbaI</td>
<td>2.2 s and 64.0 s (PN Salmonella)</td>
</tr>
</tbody>
</table>

* No proteinase K was added to plug.

- Run with H9812 Standard
- Digested for up to 2 hours
Epidemiology results

Many areas of the hospital were investigated:

- Microbiology lab
- Phlebotomy practices
- Environmental contamination
- Surgical and anesthetic practices
- Pharmaceutical contamination (manufacturer, pharmacy, or staff)
Klebsiella oxytoca PFGE results

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Details</th>
<th>PFGE-XbaI</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Blood</td>
<td>FDA, hydromorphone bag C (#2BC)</td>
<td>KOXY2*</td>
</tr>
<tr>
<td>21</td>
<td>Blood</td>
<td>FDA, hydromorphone bag D (#2CA)</td>
<td>KOXY2</td>
</tr>
<tr>
<td>26</td>
<td>Blood</td>
<td>FDA, hydromorphone bag D</td>
<td>KOXY1</td>
</tr>
<tr>
<td>5</td>
<td>Blood</td>
<td>SCH, hydromorphone bag A</td>
<td>KOXY1</td>
</tr>
<tr>
<td>18</td>
<td>Blood</td>
<td>FDA, hydromorphone bag C (#2BB)</td>
<td>KOXY1</td>
</tr>
<tr>
<td>21</td>
<td>Blood</td>
<td>SCH, hydromorphone bag B</td>
<td>KOXY1</td>
</tr>
<tr>
<td>21</td>
<td>Blood</td>
<td>SPCU bathroom drain</td>
<td>KOXY9*</td>
</tr>
<tr>
<td>26</td>
<td>Blood</td>
<td>Surgery 1A drain</td>
<td>KOXY8*</td>
</tr>
</tbody>
</table>

PFGE Pattern

<table>
<thead>
<tr>
<th>PFGE Pattern</th>
<th>KOXY1</th>
<th>KOXY2</th>
<th>KOXY3</th>
<th>KOXY8</th>
<th>KOXY9</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOXY1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>KOXY2</td>
<td>>10</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>KOXY3</td>
<td>>10</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>KOXY8</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>KOXY9</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>>10</td>
<td>--</td>
</tr>
</tbody>
</table>

*Indicates unrelated

Indicates closely related
Ochrobactrum anthropi PFGE results

PFGE-SpeI

ID	SourceSite	MN Spe1 PFGE
N/A | FDA, saline bottle (#1A) | OANT9*
N/A | FDA, saline bottle (#1B) | OANT9
7 | Blood | OANT4
18 | Blood | OANT4
5 | Blood | OANT4*
3 | Blood | OANT4
21 | Blood | OANT4
20 | Blood | OANT4
14 | Blood | OANT6
14 | Blood | OANT6*
N/A | Quality control organism | OANT5*
N/A | Cornea | OANT7*

PFGE Pattern

<table>
<thead>
<tr>
<th>PFGE Pattern</th>
<th>OANT4</th>
<th>OANT5</th>
<th>OANT6</th>
<th>OANT9</th>
</tr>
</thead>
<tbody>
<tr>
<td>OANT4</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OANT5</td>
<td>>10</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OANT6</td>
<td>2</td>
<td>>10</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>OANT9</td>
<td>3</td>
<td>>10</td>
<td>5</td>
<td>--</td>
</tr>
</tbody>
</table>

- **Green** indicates unrelated
- **Yellow** indicates closely related
- **Blue** indicates possibly related
Stenotrophomonas maltophilia

PFGE results

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Details</th>
<th>MN Xba1 PFGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>SCH</td>
<td>hydromorphone bag A</td>
<td>SMALT1</td>
</tr>
<tr>
<td>26</td>
<td>SCH</td>
<td>hydromorphone bag B</td>
<td>SMALT1*</td>
</tr>
<tr>
<td>15</td>
<td>Blood</td>
<td></td>
<td>SMALT1</td>
</tr>
<tr>
<td>N/A</td>
<td>Surgery 1A</td>
<td>drain</td>
<td>SMALT6*</td>
</tr>
</tbody>
</table>

PFGE-Xbal

Dice (Tol 1.5%-1.5%) (H>0.0% S>0.0%) [0.0%-100.0%]

PFGE Pattern

<table>
<thead>
<tr>
<th>PFGE Pattern</th>
<th>SMALT1</th>
<th>SMALT6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMALT1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>SMALT6</td>
<td>>10</td>
<td>--</td>
</tr>
</tbody>
</table>

- Indicates unrelated
- Indicates closely related
- Indicates possibly related
PFGE Results from Patient Isolates, Narcotic bags, and Saline Bottle

Bacteremias

Hydromorphone Bags

Saline Bottle

Hydromorphone Bag C # 21
Hydromorphone Bag A # 21
Hydromorphone Bag B # 26
Hydromorphone Bag D # 26

Saline Bottle A

OANT9

KOXY1

KOXY2

SMALT1

KOXY1

KOXY1

KOXY1

KOXY1

KOXY3

KOXY2

KOXY1

KOXY1

OANT4

OANT4

OANT4

OANT4

OANT4

SMALT1
Acknowledgements

MDH lab
Selina Jawahir, Victoria Lappi, Jackie Mahon, Dave Boxrud

MDH epidemiology
Aaron DeVries, Jane Harper, Lindsey Lesher, Melissa Schaefer, Richard Danila, Ruth Lynfield