BioNumerics for PulseNet
Today and tomorrow
Hannes Pouseele
Applied Maths
Introduction

Goal
BioNumerics functionality for PulseNet use and beyond

Disclaimer

- Why you should have BioNumerics 6.6
 - Band editing in the comparison
 - Charts and statistics
 - Next-generation sequencing

- Why you will love BioNumerics 7.x
 - Faster and better
 - MLVA, MALDI, Whole Genome Maps, Genome Sequence Scanning
 - Classifiers
 - More next-generation sequencing
Introduction

Disclaimer

For the last 7 years, I was affiliated with the following organization:

- **Organization:**
 Applied Maths NV, Keistraat 120, B-9830 Sint-Martens-Latem, Belgium

- **Relationship:**
 employee
Band editing in the comparison

- Bands can be edited in the comparison
 - Click on a gel position to select it
 - Delete/enter will remove/add the band

- Comparison serves as a playground to assess the changes
- Changes can be stored when storing the comparison (or via the dedicated menu item)
BioNumerics 6.6
Charts and statistics

- Many possibilities to better understand your data
- Unfortunately, rather complicated
 - Custom PulseNet functionality for epi charts
Next-generation sequencing

Power assembler: a user-friendly tool for the assembly of whole genome sequencing data
- Reference mapping (BWA-AM) with small memory footprint
- De novo assembly (Velvet)

Inspection and quality assessment of the assembled results
- Detailed view of the alignment of each read
- Overview tools for global picture and fast navigation
Follow-up tools

- Reference-based SNP detection
- SNP-based sample clustering
- Alignment of de novo assembled genomes
- Chromosome comparison and SNP detection
BioNumerics 7.x

Faster and better

- More powerful database interaction
 - Flexible choice in loading only part of the database
 - Tools to manage large numbers of comparisons, experiment types, ...

- Many limitations have been removed
 Number of loaded entries, fingerprint files, reference bands, band classes, number of comparison groups

- However, this comes at a cost: local databases no longer supported
 - Very robust conversion tool available
 - Working on a general strategy to accommodate for this within PulseNet
 - If you need help, contact us!
Sequencer fingerprints (MLVA)

- Easy import of raw automated sequencer curves.
- Fast and flexible peak searching
- Noise removal, bleed through detection, stutter bands elimination, etc.
- Normalization algorithm with built-in predefined reference patterns for reliable and fast normalization.
BioNumerics 7.x

MALDI

- Easy import of spectrum data from various formats
- Customizable workflow templates for easy preprocessing
- Baseline subtraction, noise elimination and curve smoothing.
- Automatic peak calling with manual editing options.
- Creation of summary spectra based on peak matching and/or member averaging.
 - Filter out spectra of low quality.
 - Similarity values allow easy inspection of the coherence.
Whole genome maps (OpGen)

- High resolution, ordered whole genome restriction maps
- Analysis focused on strain typing and characterization.

- Easy XML import of whole genome map data
- Pairwise alignment indicates concordance and large-scale rearrangements between samples

- Map-based clustering and global alignment allows to distinguish highly related strains using new and fast tolerance- and pattern-based algorithms.
GSS (Pathogenetix)

- High resolution restriction fragments (length and fluorescence pattern)
- Analysis focused on strain typing and characterization.

- Middle ground between PFGE and WGS:
 - GSS groups correlate well with PFGE groups and very well with WGS groups
 - GSS subgroups correspond well with WGS subgroups
Classifiers are used to identify an unknown sample
- Example: rank by similarity, naive Bayesian classifier, support vector machines, ...
- Extremely useful but often fragile procedures
- Validation framework available

Usage:
- MALDI-based genus/species identification
- rMLST-based genus/species identification
- WGS-based serotyping (cfr Luminex SNP arrays)

Example: classifying *Lmo* lineages
More next-generation sequencing

- NGS data is now an experiment type of its own
 - Possibility to link to externally stored data (storage volume, NCBI, ...)

- Quality assessment of the raw data

- Faster alignment algorithms

- State of the art SNP analysis

- Whole genome MLST analysis

- Targeted metagenomics (16S, ...)
BioNumerics 7.x

WGS data processing model

Calculation engine
Trimming, mapping, de novo assembly, SNP detection, allele detection

BioNumerics client

Isolate database

External storage
NCBI, ENA, BaseSpace
wgMLST pipeline

BioNumerics 7.x

BIGSDb
- Public nomenclature

Nomenclature server
- Allele databases

Isolate database

BioNumerics client

External storage
- NCBI, ENA, BaseSpace

Calculation engine
- Trimming, mapping, de novo assembly, SNP detection, allele detection

SQL databases