The Addition of Pancreatitis Associated Protein (PAP) in a Two-Tier IRT/DNA Screening Strategy for Cystic Fibrosis is Less Effective in Programs that Screen at 48 hours of Age.

Enzo Ranieri
Biochemical Genetics
Head South Australian Neonatal Screening Centre
Directorate of Genetic and Molecular Pathology
Women’s and Children’s Hospital Campus, Adelaide
SA Pathology, South Australia, Australia
enzo.ranieri@adelaide.edu.au enzo.ranierie@health.sa.gov.au
<table>
<thead>
<tr>
<th>Summary Statistics</th>
<th>2008/2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budget</td>
<td>36.5 million</td>
</tr>
<tr>
<td>Emergency attendances</td>
<td>55,502</td>
</tr>
<tr>
<td>- Women</td>
<td>20,850</td>
</tr>
<tr>
<td>- Children</td>
<td>35,652</td>
</tr>
<tr>
<td>Admissions</td>
<td>41,595</td>
</tr>
<tr>
<td>- Women</td>
<td>19,480</td>
</tr>
<tr>
<td>- Children</td>
<td>22,115</td>
</tr>
<tr>
<td>Births</td>
<td>5,895</td>
</tr>
<tr>
<td>Beds</td>
<td>316</td>
</tr>
<tr>
<td>- Women</td>
<td>123</td>
</tr>
<tr>
<td>- Children</td>
<td>220</td>
</tr>
<tr>
<td>- ICU/SC</td>
<td>54</td>
</tr>
<tr>
<td>Average bed Occupancy</td>
<td>91.5%</td>
</tr>
</tbody>
</table>
Neonatal Screening Laboratories in Australia

Each year 265,000 Australian babies are screened at or near 48hrs in 5 Specialist Paediatric Hospital Centres. Metabolic Clinic with specialist clinical expertise for treatment and monitoring of IEM.

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Australia</th>
<th>South Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (,000 km²)</td>
<td>7,682</td>
<td>984</td>
</tr>
<tr>
<td>Population (millions)</td>
<td>21.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Residents/km²</td>
<td>2.33</td>
<td>1.4</td>
</tr>
<tr>
<td>Urban Pop’n (millions)</td>
<td>1.2</td>
<td>86%</td>
</tr>
<tr>
<td>Health Costs ($m)</td>
<td>$41,742</td>
<td></td>
</tr>
<tr>
<td>Health Costs/Person</td>
<td>$2,333</td>
<td></td>
</tr>
</tbody>
</table>

Newborn screening laboratories in Australia within Paediatric Tertiary Hospitals
AIMS of the Study

➢ To determine the value of adding Pancreatitis-Associated protein (PAP) in a newborn screening strategy for CF.

➢ Does adding PAP to an existing two-tier IRT/DNA strategy improve CF screening:
 - through review of the:
 • correlation between PAP and CF
 • association between elevated PAP and CFTR carriers
 • correlation of the level of PAP :
 » with birth weight & age at collection
 » Specifically at, or near 48h of age
Two-Tier IRT/DNA CF Screening Strategy

- A two-tier IRT/DNA screening strategy is in use in all Australian\New Zealand newborn screening laboratories
 - Has been in operation in South Australia since December 1989.

Two-Tier IRT/DNA CF Screening Strategy

Screening Strategy relies upon:

- **First Tier**: Generous Immunoreactive Trypsin (IRT) cut-off point
 - Top 1%

- **Second Tier**: High frequency of common CFTR mutations
 - p.F508del ~ 72% of CF Chromosomes in our population

Two-Tier IRT/DNA CF Screening Strategy

Screening Strategy relies upon:

- **First Tier**: Generous Immunoreactive Trypsin (IRT) cut-off point
 - Top 1%
- **Second Tier**: High frequency of common CFTR mutations
 - p.F508del ~ 72% of CF Chromosomes in our population

Detection/miss rate

- **Predicted up to 6% of CF neonates missed**
 - IRT<99th centile
 - no CFTR mutations
- **Sweat-testing requires expertise**
 - Sufficient number of tests (ideally centralised)
 - Appropriate age-related normal ranges (>4 weeks old to adults)
- Co-ordinated, timely Genetic Counselling

SA NEONATAL CF SCREENING PROGRAMME

Two-Tier IRT/ DNA Screening Strategy

1st Tier:
- IF IRT $\geq 99^{th}$ CENTILE

2nd Tier:
- 2 mutations
 - confirm with sweat-test
 - CF
 - 2 known mutations
- 1 mutation
 - diagnostic sweat-test
 - CF
 - 1 known mutation
- no mutation
 - no follow up
 - CF carrier
 - CF like disease
SA NEONATAL CF SCREENING PROGRAMME

Two-Tier IRT/ DNA Screening Strategy

1st Tier: IF IRT \geq 99^{th} \text{ CENTILE}

- GENOTYPE
 - 2 mutations
 - confirm with sweat-test
 - CF
 - 2 known mutations
 - 1 mutation
 - diagnostic sweat-test
 - CF
 - 1 known mutation
 - no mutation
 - no follow up
 - CF carrier
 - CF like disease
Sweat Test in IRT/DNA Screened Population

Screened cohort with IRT > 99th centile and one or two CFTR mutations.
Sweat Test in IRT/DNA Screened Population

Screened cohort with IRT>99th centile and one or two CFTR mutations

- **Normal**
- **Equivocal**
- **CF**
South Australian CF Screening Programme Performance Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Number Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of infants screened</td>
<td>477,904</td>
</tr>
<tr>
<td>IRT <99th</td>
<td>472,169</td>
</tr>
<tr>
<td>DNA mutation analysis performed</td>
<td>5,735 (1.2%)</td>
</tr>
<tr>
<td>No identifiable mutation</td>
<td>5,243</td>
</tr>
<tr>
<td>Two identifiable mutations</td>
<td>94</td>
</tr>
<tr>
<td>One identifiable mutation</td>
<td>398</td>
</tr>
<tr>
<td>Sweat test positive</td>
<td>42</td>
</tr>
<tr>
<td>Sweat test negative</td>
<td>356</td>
</tr>
<tr>
<td>Carrier frequency</td>
<td>1 in 13</td>
</tr>
<tr>
<td>Total number of CF infants detected</td>
<td>136</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>34%</td>
</tr>
<tr>
<td>Missed (presentation 2 -12 years of age)</td>
<td>7 (4%)</td>
</tr>
<tr>
<td>Normal IRT</td>
<td>3</td>
</tr>
<tr>
<td>Elevated IRT no identified CF mutation</td>
<td>4</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>95%</td>
</tr>
<tr>
<td>Apparent incidence of detected CF infants</td>
<td>1: 3,515</td>
</tr>
<tr>
<td>Prenatal diagnosis and termination</td>
<td>26</td>
</tr>
<tr>
<td>Overall prevalence of CF</td>
<td>1: 2,770 (162 cases)</td>
</tr>
</tbody>
</table>
NSW CF Screening Programme performance data

<table>
<thead>
<tr>
<th>Description</th>
<th>Number Identified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Babies screened</td>
<td>925,094</td>
</tr>
<tr>
<td>Tested by PCR</td>
<td>10,275</td>
</tr>
<tr>
<td>CF</td>
<td>296</td>
</tr>
<tr>
<td>p.F508del/p.F508del</td>
<td>168</td>
</tr>
<tr>
<td>p.F508del/other</td>
<td>113</td>
</tr>
<tr>
<td>Terminations</td>
<td>8 (up to 1999)</td>
</tr>
<tr>
<td>Apparent incidence</td>
<td>1:3,000</td>
</tr>
<tr>
<td>Missed, False negatives</td>
<td>18 (5%)</td>
</tr>
<tr>
<td>Normal IRT</td>
<td>6</td>
</tr>
<tr>
<td>Elevated IRT no p.F508del CFTR mutation</td>
<td>12*</td>
</tr>
<tr>
<td>p.F508del/other, negative sweat test</td>
<td>595</td>
</tr>
<tr>
<td>Carrier frequency</td>
<td>1 in 13</td>
</tr>
<tr>
<td>Expected overall number of CF</td>
<td>354</td>
</tr>
</tbody>
</table>

Data provided by Dr. Veronica Wiley NSW Newborn Screening Programme
Neonatal Screening for CF

- Pancreatitis-Associated Protein (PAP) has been reported to be elevated in newborn infants with CF
Neonatal Screening for CF

- Pancreatitis-Associated Protein (PAP) has been reported to be elevated in newborn infants with CF.
 - Sarles et al / Pediatr. 147, 302-305 2005

Suggested IRT/PAP CF screening strategy

- All newborns are tested for IRT:
 - Those with levels >50mg/L tested for PAP.
 - Those with PAP > 1.8ng/mL and with PAP > 1.0ng/mL, and IRT > 100ng/mL Recalled for sweat-testing
Pancreatitis-associated protein (PAP)- a screening marker for CF?

- PAP
 - A lectin-related secretory protein present in small amounts in normal pancreas and over expressed during the acute phase of pancreatitis.
 - In animal models PAP is constitutively expressed in the intestinal tract, but not in other tissues. PAP mRNA could not be evidenced in liver, stomach, salivary glands, brain, kidney or testis.
 - Its pattern of expression during severe pancreatic aggression suggests that it might be a stress protein involved in the control of bacterial proliferation.
 - PAP has been suggested to be a marker of ‘pancreatic sufficiency’ in individuals with CF
Two-Phase Study Design

- **Phase I:** to determine South Australian newborn population statistics for PAP.
Two-Phase Study Design

– **Phase I**: to determine South Australian newborn population statistics for PAP.

– **Phase II**: to include selected samples from the screening programmes in other Australian states (NSW, QLD & VIC) to form a screen cohort of ~195,000 samples.

• **Selected for CFTR mutational analysis**
 - Top 1% and/or >2.5MoM of IRT values

• Determination of PAP & repeat IRT in South Australia on coded whole blood-spot samples

• Stratify by:
 » CF mutational analysis
 » Sweat-test negative
 » CFTR carriers
Australian PAP Study Phase I

Phase I

• Modification of PAP assay (MucoPAP®, DYNABIO) to use Eu³⁺ labelled strepavidin.

• South Australian Newborn Population
 – Establish normal PAP population distribution and determine levels for the 90ᵗʰ, 95ᵗʰ & 99ᵗʰ centiles

• Cohort
 – 2,885 unselected newborn specimens
 » Normal population statistics
 » CFTR carriers
Population distributions for IRT and PAP on the same samples

- **SA population**
 - Establish population reference intervals for IRT and PAP on 2,885 consecutive blood-spot samples
 - 90th, 95th & 99th percentiles
 - Stratify against age at collection birth weight preterm and low gestational age.

<table>
<thead>
<tr>
<th>PAP Percentiles</th>
<th>5</th>
<th>25</th>
<th>50</th>
<th>90</th>
<th>95</th>
<th>97</th>
<th>99</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.085</td>
<td>0.135</td>
<td>0.21</td>
<td>0.48</td>
<td>0.59</td>
<td>0.70</td>
<td>1.07</td>
<td>2,530</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IRT Percentiles</th>
<th>5</th>
<th>25</th>
<th>50</th>
<th>90</th>
<th>95</th>
<th>97</th>
<th>99</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.0</td>
<td>12.0</td>
<td>18.0</td>
<td>37.0</td>
<td>45.0</td>
<td>50.8</td>
<td>61.0</td>
<td>2,530</td>
</tr>
</tbody>
</table>
Correlation of IRT and PAP against Age at Collection & Birth Weight

(Plot represents blood-spot samples from the unpartitioned 2,888 in addition to selected cases where N08 represents 8 CFTR mutations.)
“Clinical Study” Phase II

- Participation by the NSW, QLD & VIC Neonatal Screening Laboratories
 - Provided prospectively collected coded dried blood-spot samples
 - *Selected IRT population* $\geq 99^{th}$ centile and or >2.5 MoM
 - 3 blood spots for each case sent as a weekly batch to the SANSCL laboratory for analysis.
 » Estimated 1x IRT & 2 x PAP
 - Statistical analysis
 - To ascertain sensitivity & specificity
Phase II Cohort

• “Clinical study” cohort (N=1,979 specimens) with
 IRT≥ 99th centile and/or >2.5MoM

 – 1,812 No CFTR mutations
 – 119 with a single CFTR mutation
 – 48 specimens from infants with CF (47)
Phase II: IRT versus PAP

Phase II: IRT versus PAP

90th 95th 99th

500
400
300
200
100
0

Immunoreactive Trypsin (IRT; µg/L whole blood)

Pancreatitis Associated Protein (PAP; µg/L)

N=1,979
(Plot represents blood-spot samples from the unpartitioned 2,888 in addition to selected cases where N08 represents 8 CFTR mutations tested).
IRT comparison between different groups

Plot represents blood-spot samples from the unpartitioned 2,888 in addition to selected cases where N08 represents 8 CFTR mutations tested.
PAP comparison between different groups

(Plot represents blood-spot samples from the unpartitioned 2,888 in addition to selected cases where N08 represents 8 CFTR mutations tested)
PAP comparison between different groups

(Plot represents blood-spot samples from the unpartitioned 2,888 in addition to selected cases where N08 represents 8 CFTR mutations tested)
PAP comparison between different groups

(Plot represents blood-spot samples from the unpartitioned 2,888 in addition to selected cases where N08 represents 8 CFTR mutations tested)
PAP comparison between different groups

Plot represents blood-spot samples from the unpartitioned 2,888 in addition to selected cases where N08 represents 8 CFTR mutations tested.
Correlation between IRT and PAP in Neonates with CF

<table>
<thead>
<tr>
<th>Allele Combination</th>
<th>Immunoreactive Trypsin (IRT; µg/L whole blood)</th>
<th>Pancreatitis Associated Protein (PAP: µg/L)</th>
</tr>
</thead>
</table>

90th 95th 99th

99th 95th 90th
Correlation between IRT and PAP in Neonates with CF (p.F508 del homozygous)
Correlation between IRT and PAP in Neonates with CF

Immunoreactive Trypsin (IRT; µg/L whole blood) vs. Pancreatitis Associated Protein (PAP; µg/L)

- p.F508del/X
 - Age at collection
 - 1 = day 2
 - 2 = day 9

- X/X
 - (No CFTR mutations)

90th 95th 99th

0 100 200 300 400 500

0 1.0 2.0 3.0 4.0
IRT and PAP in Infants with CF at Age of Collection

(IRT (not statistically significant at the p<0.05 level)
(Non-parametric K-W median test)
IRT and PAP in Infants with CF at Age of Collection

IRT

<table>
<thead>
<tr>
<th>Age at Collection (days)</th>
<th>IRT (µg/L whole blood)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

(not statistically significant at the p<0.05 level)

(Non-parametric K-W median test)

PAP

<table>
<thead>
<tr>
<th>Age at Collection (days)</th>
<th>PAP (µg/L whole blood)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

(statistically different at p<0.05)
Additional studies of PAP level in Neonates with CF

Pancreatitis Associated Protein (PAP µg/L whole blood)

Age at Collection (Days)
Additional studies of PAP level in Neonates with CF

Pancreatitis Associated Protein (PAP µg/L whole blood)

Age at Collection (Days)

- p.F508del/p.F508del
- p.F508del/p.G551D

99th percentile: 5.0 µg/L
95th percentile: 1.0 µg/L
IRT/DNA versus IRT/PAP/DNA

<table>
<thead>
<tr>
<th>Total</th>
<th>1,978</th>
</tr>
</thead>
<tbody>
<tr>
<td>From a projected newborn screened population of ~195,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>IRT ≥ 99th percentile</th>
<th>PAP ≥ 95th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFTR Carrier</td>
<td>119</td>
<td>25</td>
</tr>
<tr>
<td>CFTR carrier Frequency</td>
<td>1 in 16</td>
<td>1 in 80</td>
</tr>
</tbody>
</table>

CF

<table>
<thead>
<tr>
<th>CFTR genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 p.F508del/p.F508del</td>
</tr>
<tr>
<td>2 p.F508del p.85E</td>
</tr>
<tr>
<td>1 p.F508del p.G542X</td>
</tr>
<tr>
<td>1 p.F508del p.G511D</td>
</tr>
<tr>
<td>10 p.F508/X</td>
</tr>
<tr>
<td>2 p.R553X/X</td>
</tr>
<tr>
<td>1 p.F508 del/p.262 263delT</td>
</tr>
<tr>
<td>2 p.F508del/p.N1303K</td>
</tr>
<tr>
<td>1 p.F508del/p.R1157H</td>
</tr>
<tr>
<td>1 p.F508del/1078delT</td>
</tr>
<tr>
<td>1 X/X</td>
</tr>
</tbody>
</table>

Detected

<table>
<thead>
<tr>
<th>46</th>
<th>37</th>
</tr>
</thead>
</table>

Missed by primary analyte

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>X/X</td>
<td></td>
</tr>
</tbody>
</table>
Better discrimination by using a product of IRT */ PAP

Evidence that IRT and PAP are independent markers of CF
- Combination of IRT & PAP may provide better discrimination
 - IRT * PAP
 - IRT – (IRT * PAP) (Proposed by M Stopsack, Dresden Germany at the 7th ISNS, August 2011)
? Better discrimination by using a product of IRT */ PAP

Given that IRT and PAP show independence as markers of CF
• Combination of IRT & PAP may provide better discrimination
 • IRT * PAP
 • IRT – (IRT * PAP) (Proposed by M Stopsack, Dresden Germany at the 7th ISNS, August 2011)
Summary

- PAP in dried whole blood-spots:
 - Elevated in a percentage of sick-preterm infants.
 - Independent of IRT level in non-CF infants.
 - No discernable correlation with either birth weight or age at collection in normal (non-CF) infants.
 - Levels decline on storage at room temperature.
 - Levels appear to increase over time in infants with CF.
Summary

- Phase II Clinical Study.....ongoing

✓ PAP reduces the number of infants identified as a CFTR carrier
 ✓ For p.F508del 1 in 80 versus the 1 in 16 as seen with IRT≥99th centile.

 ✓ Reduce the number of sweat-tests performed.
 ✓ Likely to reduce the number with equivocal sweat test and mild “CF” disease.
 ✓ Reduce cost of sweat-testing
Phase II Clinical Study.....ongoing

- PAP reduces the number of infants identified as a CFTR carrier
 - For p.F508del 1 in 30 versus the 1 in 13 as seen with IRT≥99th centile.
 - Reduce the number of sweat-tests performed.
 - Likely to reduce the number with equivocal sweat test and mild “CF” disease.
 - Reduce cost of sweat-testing

- Evidence that an elevation of PAP in infants with CF is independent of both the IRT & CFTR genotype.

- PAP is elevated in most infants with CF.
 - BUT a significant number of infants with CF have a PAP <90th centile on samples collected at 2 days of age.
Summary

- PAP in dried blood-spots:
 - This study does not support the clinical utility of adding PAP to our single-sample IRT/DNA protocol, given our early age of sample collection (<48 hours).
Summary - continued

- CF Programmes may find PAP *useful*-
 - that collect samples at a later age, >72 hours of age
 - that adopt a 2nd specimen screening strategy

- CF Programmes are *unlikely* to find PAP useful-
 - That collect a single sample at or near 48 hours,
 (optimal for MSMS screening)

- A complex algorithm would be required to develop an IRT/PAP/DNA CF screening strategy
Acknowledgment

- South Australian Neonatal Screening Centre (SANSC)
- Clinical Director Genetic & Molecular Pathology
 - Janice Fletcher
- Queensland (QLD) Newborn Screening Laboratory
 - Andrew Thomas
- New South Wales (NSW) Newborn Screening Laboratory
 - Veronica Wiley
- Victorian (VIC) Newborn Screening Laboratory
 - James Pitt
 - Nick Tsianitos

- PerkinElmer Life & Analytical Sciences, Turku, Finland.
 - Marika Kase
 - Petri Huhtinen
- INSERM Marseille, France/DYNABIO S.A
 - J-C Dagorn
p.F508del carrier frequency in elevated IRT

(G Travert, Caen France)
A possible IRT/PAP/DNA CF Screening Strategy?

DBS

IRT

< 95th %ile

≥95th %ile

≥99th %ile

≥99.5th %ile

PAP < 90th %ile

PAP ≥90th %ile

PAP ≥??th %ile

PAP >95th %ile

DNA mutation analysis

No CFTR mutations

1 CFTR mutation

2 CFTR mutations

CF screening NEGATIVE

Sweat-Test

Negative

Positive

CF Screening POSITIVE referral CF centre