Improving IRT/DNA Newborn Screening for Cystic Fibrosis to Reduce Screening False Positives by a New Molecular Strategy

2011 Newborn Screening and Genetic Testing Symposium
Atlanta, GA
May 6 – 10, 2013

Mei Baker, M.D., FACMG

Co-Director, The Newborn Screening Laboratory at WSLH
Associate Professor, Department of Pediatrics
University of Wisconsin School of Medicine and Public Health
1. Majority of infants with one mutation identified by NBS are CF carriers.
2. 2,000 mutations of *CFTR* gene are reported in the CF mutation Database, and CFTR2 Project identified the ~160 most common CF disease causing mutations that account for 97% of known CF cases (http://www.cftr2.org/)
3. Advanced next generation sequencing technology makes it possible to simultaneously detect at least 160 mutations, including the common large deletions.
Proposed IRT/DNA/DNA

IRT

Limited CFTR mutations panel

- No Mut.
- One Mut.
- Two Mut.

Screening Normal

CFTR2 162

- One Mut.
- Two Mut.

Screening Normal ??

Screening Positive
Specific Aims

1. Establish a method of simultaneously detecting 162 CFTR disease causing mutations using dried blood spot routine newborn screening specimens to create IRT/DNA/DNA CF screening opportunity.

2. Demonstrate that the three-tier IRT/DNA/DNA CF screening protocol would significantly reduce false screening positive results caused by identification of CF heterozygote carrier infants.

3. Demonstrate that it is cost effective to implement the three-tier IRT/DNA/DNA CF screening protocol into routine NBS for CF.
Strategy

1. Capitalize on data from the CFTR2 project.

2. Utilize the Illumina MiSeqDx™ Cystic Fibrosis Solution assay for 162 CFTR mutations. (including common deletions)

3. Collaboration with five States (IL, IN, MI, MN, and WI), establishing The Great Lakes Consortium for Newborn Screening (total more than 500,000 birth per year).
Study Design and Methods

1. Analyze DBS specimens for 162 CFTR mutations there is a “high” IRT level and one CFTR mutation detected in the routine two tier IRT/DNA screening test (including common large deletions).

2. Verify newly identified mutations by Sanger sequencing at Molecular Quality Improvement Program, CDC NBS & Molecular Biology Branch.

3. DO NOT change routine CF screening/follow-up during the study period, i.e., maintain practices.

4. Access concordance between the results from sweat test and the number of mutant alleles.
MiSeqDx Cystic Fibrosis System

• 162 DNA mutations including (IUO version*)
 – 127 single nucleotide mutations
 – 32 insertion / deletion mutations
 – 2 large deletions
 – PolyTG / PolyT region

*Product is currently under FDA review.
Cystic Fibrosis Workflow Overview

- Isolate DNA
- Prepare Libraries
- Pool Libraries
- Sequence on MiSeqDx
- Review Data
Cystic Fibrosis Assay Overview

- Genomic DNA (gDNA)
- Cystic Fibrosis Region (All Exons, some Introns)
- 80 Targets, typical size: 175bp – 225bp
Cystic Fibrosis Assay Overview

Genomic DNA → Hybridization

95°C

Region of Interest (170 or 250bp)
Cystic Fibrosis Assay Overview

Genomic DNA → Hybridization → Extension-Ligation

Region of Interest (170 or 250bp)
Cystic Fibrosis Assay Overview

How the assay works

1. Add primers for dual-indexing
2. PCR Amplification
3. PCR Clean up
Key Features:
1. Robust and logical work flow
2. 46 + 2 samples multiplexing platform
3. Dual indexing identification
4. Immediate result w/o informatics

MiSeqDx™ Cystic Fibrosis System Validation

• 68 **DBS** specimens with known mutations studied (generally detected through NBS)
 – 48 unique CF-causing mutations
 – 45 Wisconsin patients with two known mutations
 – 23 specimens from CDC NBS & Molecular Biology Branch

• DBS specimens were de-identified

• Results showed 100% concordance with each sample allele call rate at 100%

• Assay validated on two different DNA isolation methods
Potential Advantages of the proposed IRT/DNA/DNA method

• Sweat tests contribute 11.1% of the cost for diagnosis of CF through NBS, and this could be reduced to ~1% if the 3-tier method is successful.

• Avoid unsuccessful follow-up (missed/failed sweat tests).

• Another advantage would be eliminating the parental costs/travel and some anxieties, especially when QNS sweat tests occur.
Current Study Status

• Wisconsin Site
 – Obtained IRB approval
 – Completed assay validation using DBS
 – On-going MiSeqDx™ Cystic Fibrosis Solution assay on specimens with one mutation
 – Evaluate the assay performance on DNA eluted from DBS w/o washing step.

• Collaboration Sites
 – Three states obtained IRB approval.
 – One state scheduled specimens shipping.
 – One state IRB pending
Funding Support
The Legacy of Angels Foundation

Co-Funders: Paul and Sue Rosenau
Acknowledgements

• WSLH and SMPH at University of Wisconsin-Madison
 Philip Farrell, MD, PhD. (Co-PI)
 Anne Atkins, MPH

• The Newborn Screening Laboratory at Illinois Department of Public Health
 George Dizikes, PhD

• The Newborn Screening Laboratory at Indiana State Department of Health
 Barbara Lesko, MT (ASCP)

• The Bureau of Laboratories at Michigan Department of Community Health
 Kevin Cavanagh, PhD

• The Newborn Screening Program at Minnesota Department of Health
 Mark McCann, MS

• Newborn Screening and Molecular Biology Branch, Centers for Disease Control and Prevention
 Suzanne Cordovado, PhD
 Marie Earley, PhD
 Carla Cuthbert, PhD

 Special Thanks to Dr. Harry Hannon and Gary Hoffman
It all starts with a healthy baby!

Quality care helps keep them healthy!