Autosomal Dominant Hypermethioninemia in an ethnically diverse population

Graham Sinclair, PhD FCCMG
Biochemical Genetics and Newborn Screening Laboratories,
BC Children’s Hospital
University of British Columbia
NBS for Homocystinuria

- **Classical Homocystinuria (cystathionine β-synthase def.)**
 - Analyte = Methionine
 - tHCys not amenable to current high throughput methods

- **Meets most screening criteria**
 - Well characterized natural history
 - *Risk of stroke, lens dislocation, developmental delay*
 - Effective treatment
 - *Protein restriction, close monitoring*
 - Evidence of improved outcomes from early intervention

- **Test performance is suboptimal**
 - Mild cases can be missed (sensitivity)
 - Methionine elevations are not specific
HyperMethioninemias

• Classic Homocystinuria (cystathionine β-synthase)
• Methionine aminotransferase (MAT I/III)
• Glycine N-methyltransferase (GNMT)
• S-adenosylhomocysteine hydrolase (SAM Hydrolase)

• Secondary Causes
 • Tyrosinemia type I (FAH)
 • Citrin deficiency
 • Liver disease
 • Prematurity
 • Low birth weight
MAT I/III Deficiency (MAT1α)

• **The primary outcome of many HCY screening programs**
 - Taiwan 1/100,000 (CBS 1/1.7 million)\(^1\)
 - Galicia 1/28,000 (CBS 1/120,000)\(^2\)
 - Portugal 1/26,000 (CBS 1/56,000)\(^3\)

• **Clinical Features**
 - Highly variable
 - Vast majority of cases are asymptomatic
 - Reports of demyelination in some (SAM deficiency?)

• **Treatment**
 - Monitoring only, in many cases
 - Protein restriction if Met >150 uM
 - Anecdotal evidence that SAM treatment may improve outcomes in those with symptoms

\(^1\)Chien et al. Early Hum Dev 2005; 81,6:529-33
\(^2\)Couce et al. JIMD 2008; 31 Suppl2:S233-9
\(^3\)Martins et al. JIMD 2012;6:107-112
Autosomal Dominant MAT I/III

- **p.R264H Mutation**
 - Heterozygotes with hypermet detected by NBS
 - Mild hypermet (80-250 uM)
 - No other mutations on full sequencing
 - Hypermet in parent sharing the genotype
 - Mild homocystine elevations in most cases
 - Galicia (5), Portugal (12), Taiwan (1)
 - Mutation likely a dominant negative
 - Affects interface of the two dimers
- **No other dominant mutations reported**
 - Hypermet reported with heterozygosity for p.A295V but autosomal dominant transmission not confirmed
 - Some heterozygote hypermet cases reported with an assumed second mutation not identified
BC Screening Program

- Cover British Columbia and Yukon
- 45,000 Births per year
- Expanded program in 2009
 - (22 primary disorders)
- Includes Homocystinuria
 - Met > 70 uM
- All positive screens confirmed on a repeat card
- Single Metabolic Center for follow-up
 - BC Children’s Hospital
Feb 2010 First HyperMet Case

Case 1: Newborn Male
European Descent
Vancouver
Initial Card: MET = 95 uM (Cutoff <70)
Repeat Card: MET = 167 uM

- Followup Testing
 - Plasma MET = 119 uM (Ref<36)
 - Plasma tHCys normal
 - SAM slightly increased initially then normalized
 - SAH normal
 - Maternal MET = 53 uM (Father normal)
 - MAT1a Sequencing = Het c.776C>T (p.A259V)
 - Mother also heterozygous (Father non-carrier)
Mar 2010 2nd HyperMet Case

Case 2: Newborn Male
First Nations Descent
Northern BC
Initial Card: MET = 105 uM (Cutoff <70)
Repeat Card: MET = 186 uM

• Followup Testing
 • Plasma MET = 139 uM (Ref<36)
 • tHCys Normal
 • SAM slightly increased initially then normalized
 • SAH normal
 • Maternal MET = 53 uM (Father normal)
 • MAT1a Sequencing = Het c.776C>T (p.A259V)
 • Mother also heterozygous (Father non-carrier)
Subsequent HyperMet Cases

Case 3: Newborn Female
First Nations Descent
Northern BC (same community as #2)
Initial Card: MET = 108 uM (Cutoff <70)
MAT1a = p.A259V (Shared with Mom)

Case 4: Newborn Male
Chinese Descent
Vancouver
Initial Card: MET = 136 uM (Cutoff <70)
MAT1a = p.S114F (Shared with Dad)

Case 5: Newborn Female
Vietnamese Descent
Vancouver
Initial Card: MET = 126 uM (Cutoff <70)
MAT1a = p.G253R (Shared with Dad)
Summary of BC Experience

<table>
<thead>
<tr>
<th>Location</th>
<th>Ethnicity</th>
<th>Plasma Met uM (Ref <36)</th>
<th>Parental Met uM (Ref<36)</th>
<th>MAT1a Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancouver</td>
<td>Caucasian</td>
<td>119</td>
<td>53</td>
<td>c.776C>T (p.A259V)</td>
</tr>
<tr>
<td>Northern BC</td>
<td>First Nations</td>
<td>139</td>
<td>53</td>
<td>c.776C>T (p.A259V)</td>
</tr>
<tr>
<td>Northern BC</td>
<td>First Nations</td>
<td>95</td>
<td>49</td>
<td>c.776C>T (p.A259V)</td>
</tr>
<tr>
<td>Vancouver</td>
<td>Chinese</td>
<td>65</td>
<td>38</td>
<td>c.341C>T (p.S114F)</td>
</tr>
<tr>
<td>Vancouver</td>
<td>Vietnamese</td>
<td>137</td>
<td>89</td>
<td>c.757G>C (p.G253R)</td>
</tr>
</tbody>
</table>
Dominant MATI/III (p.R264H)

- MATI/III functions as a dimer.
- AA 264 is at the dimer interface.
- p.R264H subunits fail to dimerize with each other.
- Heterodimers with the WT subunit are inactive.
- Dominant Negative effect

MAT I/III Structure

Madej et al. Nucleic Acids Res 2012 40:D461-4
Conclusions

• **Hypermethioninemia on NBS (1/26,000)**
 • Mild but persistent

• **Autosomal Dominant**
 • One parent with hypermethioninemia in all cases

• **Heterozygosity for MAT1a mutations**
 • 3 different mutations
 • All showing autosomal dominant hypermet
 • No other sequence changes detected

• **Only p.A259V previously reported**
 • Taiwan, heterozygote, dominant transmission not explored

• **All 4 dominant mutations are located at the dimer interface**
• **This is the ONLY outcome of our HCY screening algorithm to date (56% PPV)**
Acknowledgements

• BC Children’s Hospital
 • Hilary Vallance
 • Saadet Mahmutoglu
 • Ramona Salvarinova
 • Sylvia Stockler

• NIH
 • Harvey Mudd