CYP21A2 Mutations Found in Congenital Adrenal Hyperplasia Patients in the California Population

Christopher N. Greene, Ph.D.
Newborn Screening and Molecular Biology Branch
National Center for Environmental Health
Centers for Disease Control and Prevention, Atlanta, GA
21 Hydroxylase Deficiency

- **Classic CAH – Salt Wasting**
 - Severe to complete loss of 21-OH activity
 - Loss of electrolyte homeostasis
 - Adrenal crises and risk of death

- **Classic CAH - Simple Virilizing**
 - Partial 21-OH activity
 - Normal sodium balance
 - Elevated androgen production

- **Non-classical CAH**
 - Usually asymptomatic until puberty
Primary CAH Newborn Screen

- Primary Screen by Immunoassay for 17-α OHP
- High false-positive rate
 - 17-α OHP levels are high in premature and/or stressed babies
 - Stratification by birth weight or gestational age for 17OHP cut-offs
 - Lack of specificity with immunoassay
 - Cross-reaction with other steroids
 - Matrix effects
Second-Tier CAH Screens

- **CAH Steroid Profiling by LC MS/MS**
 - \(\frac{([17-OHP] + [4-androstenedione])}{[cortisol]} \)

- **CAH Molecular Screening of CYP21A2 mutations**
 - Gene rearrangements
 - PCR or Multiple Ligation Probe Amplification (MLPA)
 - CYP21A2 mutation analysis
 - Multiplex mutation panel genotyping
 - Complete gene sequencing
Collaboration with California NBS

- California has been screening for CAH since 2005
 - Primary 17OHP screen with FIA - four birth weight cutoffs
 - 2nd tier MS/MS for steroid panel for slightly elevated 17OHP

- Collaboration to characterize newborn specimens of CAH cases
 - Mixture of 128 of Classic and Non-classic CAH and screen negatives
 - 50 normal controls, blinded to analysts

- Goal: Determine if genotype analysis of CYP21A2 could increase the specificity of CAH screening for California NBS
Challenges for CAH Molecular Screening

- CAH is a multi-gene disorder
 - 90-95% due to 21OH deficiency – CYP21A2
 - 5% due to 11β-hydroxylase – CYP11B1
 - 17α-hydroxylase, 3β-hydroxysteroid dehydrogenase, lipoid CAH

- Chromosomal region is complex
 - RCCX gene module repeats
 - CYP21A1P pseudogene sequence 98% identical to CYP21A2

- Not known if common mutation panel adequately covers the California population
Common CYP21A2 Mutation Panel

Gene deletions (30kb Δ and intragenic Δ) plus gene conversions account for ~30% of CAH-causing mutations
CYP21A2 Genomic Region

HLA Class I

HLA-B

510 kb

RLP2

CYP21A2

RCCX Module 1

RCCX Module 2

30 kb

HLA Class III

RCCX

HLA Class II

HLA-DR

300 kb

Chr 6p

C4A

C4B

TNXA

RP2

CYP21A1P

TNXB

RP1

CYP21A2
PCR-Based Detection of Chromosome Deletion and Gene Conversion Alleles

Most-common chromosome arrangement

30Kb Deletion

Gene Conversion
CYP21A2 and CYP21A1P PCR

CYP21A2
A2-F

CYP21A1P
A1P-F

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

150bp del

A2-F + TNXB-R
5.6 kb

30kb Deletion
A1P-F + TNXB-R
6.1 kb

Gene Conversion
A2-F + TNXA-R
5.5 kb
Genotyping Approach

- Long-range PCR profile to detect 30 kb deletions and gene conversions
- Perform complete gene sequence of CYP21A2 and the 30 kb deletion and gene conversion PCR amplicons
- Evaluate gene copy number by MLPA for 30 kb deletions, gene conversions, and possible hemizygous CYP21A2
Results of CYP21A2 Genotyping

- 128 from NBS screen positive and screen negative CAH cases
 - 114 samples with CYP21A2 mutations – 89% of cases
 - 9.6% of 228 chromosomes with multiple mutations

- 50 normal population controls
 - 1 carrier for Salt Wasting allele (M239K)
 - 1 carrier for a gene conversion
 - 4 carriers for likely tri-allelic RCCX repeat with Q318X in cis
 - 2 carriers for Non-Classic alleles, V281L and c.*13A>G
CYP21A2 Panel Mutations

<table>
<thead>
<tr>
<th>CYP21A2 Mutations</th>
<th>Phenotype</th>
<th>Count</th>
<th>%</th>
<th>US Frequency (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>P30L</td>
<td>Non-Classical</td>
<td>1</td>
<td>0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>IVS2G</td>
<td>Salt Wasting/S. Virilizing</td>
<td>59</td>
<td>25.7</td>
<td>23.4</td>
</tr>
<tr>
<td>IVS2G + Other Mutations</td>
<td></td>
<td>12</td>
<td>4.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Exon 3 8bp deletion</td>
<td>Salt Wasting</td>
<td>8</td>
<td>3.5</td>
<td>0.5</td>
</tr>
<tr>
<td>I172N</td>
<td>Simple Virilizing</td>
<td>13</td>
<td>5.7</td>
<td>12.6</td>
</tr>
<tr>
<td>I172N + Other Mutations</td>
<td></td>
<td>4</td>
<td>1.7</td>
<td>---</td>
</tr>
<tr>
<td>I236N/V237E/M239K</td>
<td>Salt Wasting</td>
<td>8</td>
<td>3.5</td>
<td>1.1</td>
</tr>
<tr>
<td>V281L</td>
<td>Non-Classical</td>
<td>4</td>
<td>1.7</td>
<td>12.6</td>
</tr>
<tr>
<td>F306+1</td>
<td>Salt Wasting</td>
<td>3</td>
<td>1.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Q318X</td>
<td>Salt Wasting</td>
<td>15</td>
<td>6.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Q318X + Other Mutations</td>
<td></td>
<td>7</td>
<td>3.0</td>
<td>---</td>
</tr>
<tr>
<td>R356W</td>
<td>Salt Wasting</td>
<td>18</td>
<td>7.8</td>
<td>3.6</td>
</tr>
<tr>
<td>P453S</td>
<td>Non-Classical</td>
<td>0</td>
<td>---</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CYP21A2 Gene Recombinants</th>
<th>Phenotype</th>
<th>Count</th>
<th>%</th>
<th>US Frequency (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 KB Deletion</td>
<td>Salt Wasting</td>
<td>47</td>
<td>20.4</td>
<td>30.5 - Combined</td>
</tr>
<tr>
<td>A2 Deletion - non 30 KB del PCR</td>
<td>Salt Wasting</td>
<td>12</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>Large Scale Gene Conversion</td>
<td>Salt Wasting</td>
<td>4</td>
<td>1.7</td>
<td></td>
</tr>
</tbody>
</table>

CYP21A2 Mutations not on Panel

<table>
<thead>
<tr>
<th>Additional Mutations</th>
<th>Phenotype</th>
<th>Count</th>
<th>%</th>
<th>US Frequency (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.-4C>T, c.738+74T</td>
<td>Undetermined</td>
<td>1</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>T201A</td>
<td>Predicted Benign</td>
<td>1</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>I291N</td>
<td>Predicted Damaging</td>
<td>1</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>R316X</td>
<td>Salt Wasting</td>
<td>1</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>H366Y</td>
<td>Salt Wasting</td>
<td>3</td>
<td>1.30</td>
<td>0.8</td>
</tr>
<tr>
<td>H366Y, c.*13A>G</td>
<td>Salt Wasting</td>
<td>1</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>R427C</td>
<td>Salt Wasting/S. Virilizing</td>
<td>1</td>
<td>0.43</td>
<td>0.3</td>
</tr>
<tr>
<td>R483A1nt</td>
<td>Salt Wasting</td>
<td>5</td>
<td>2.17</td>
<td></td>
</tr>
<tr>
<td>R483W, c.*13A>G</td>
<td>Salt Wasting</td>
<td>1</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>c.*13A>G</td>
<td>Non-Classical</td>
<td>1</td>
<td>0.43</td>
<td></td>
</tr>
</tbody>
</table>

3 specimens detected by PCR or Common Panel
- A2 Deletion / I291N
- A2 Deletion / H366Y
- A2 Deletion / c.-4C>T, C.738+74T

*Finkielstain et al. (2011)
Highlights of California CAH Cases

Out of 128 CAH screen-positive specimens

- 114 with mutations for both copies of CYP21A2
- 26 specimens with >2 mutations in cis in an allele – phase determined for all but one sample
- Overall CYP21A2 mutation profile similar to large US family study
 - 9 mutations not on common panel
 - 111/114 specimens with at least 1 mutation from panel
Questions Going Forward

- **CYP21A2 mutation panels**
 - Classic CAH vs Non-Classic mutations
 - What is minimal frequency for inclusion

- **Samples with no CYP21A2 mutations detected**
 - Fail-safe 17OHP cutoffs?
 - Additional gene analysis
 - CYP11B for 11β-OH, CYP17A for 17α-OH

- **Screening appropriate procedure**
 - Rapid and cost effective targeted genotyping from DBS
 - Interpretation of results – gene rearrangements and phasing
Acknowledgments

California NBS
F. Lorey
M. Kharrazi

Sequoia Foundation
S. Graham

CDC NSMBB
S. Cordovado
P. W. Mueller
D. Turner
Z. Detwiler

For more information please contact Centers for Disease Control and Prevention
1600 Clifton Road NE, Atlanta, GA 30333
Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348
E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.