Comparison Study of Utilizing a Reduced Inoculum in Performing Drug Susceptibility Testing of *Mycobacterium tuberculosis* to Pyrazinamide using the BACTEC™ MGIT™ 960 System at the Missouri State TB Laboratory

Roy P. Tu'ua, M(ASCP) Manager, Tuberculosis Unit Missouri State Public Health Laboratory August 21, 2013

Focus of presentation

- Importance of reliable PZA susceptibility results and background
- Explain the issues and why the study was conducted
- Approach taken to evaluate the reduced inoculum method
- Testing and Results
- Conclusion
- Where do we go from here

Importance of accurate PZA susceptibility results

- PZA important first-line drug against TB
- Prolongs treatment for TB if PZA-resistant
- Laboratory credibility

Background

- Missouri TB Lab moved into new BSL3 facility
- MGIT[™] replaced BACTEC[™] 460
- MGIT[™] may over report false PZA-resistance
 - Large inoculum
 - Media pH
 - Poor buffering
- Confirmation of PZA-resistant
 - Repeat testing
 - > PZase activity
 - Molecular sequence to assess pncA mutation

Background (continued)

Claudio Piersimoni, et al. proposed

"Laboratories should consider retesting all PZA-resistant isolates to provide accurate and reliable susceptibility results...using reduced inoculum of 0.25-mL"

Purpose of the study

Evaluate PZA susceptibility using a reduced inoculum

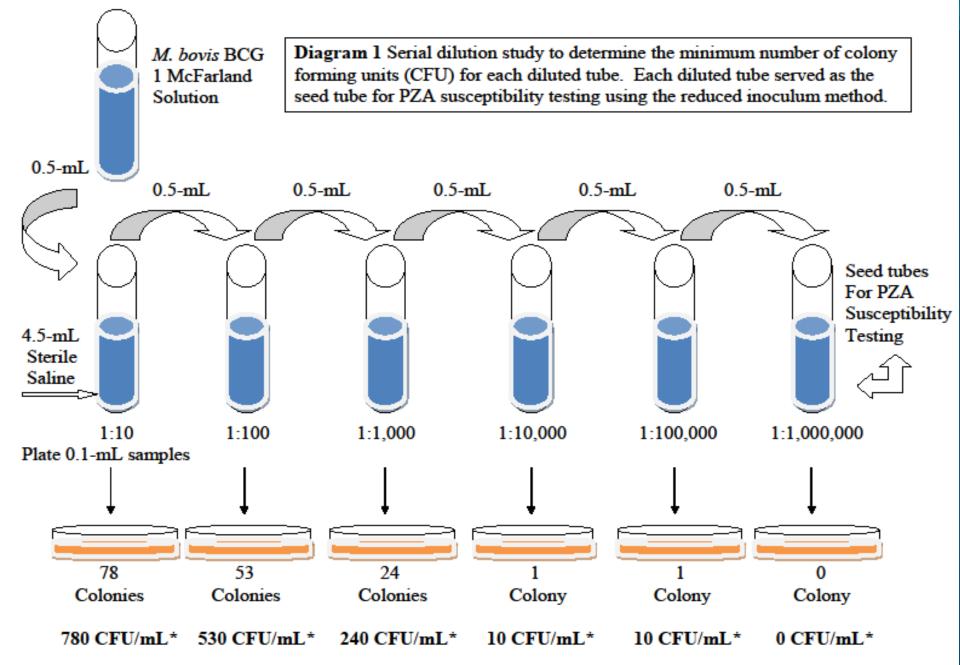
Determine whether or not we could incorporate the reduced inoculum into standard practice

Method

- Phase 1: Validate protocol and simultaneously evaluate reproducibility
- Phase 2: Serial dilution study
- Phase 3: Test strains with established PZA results
- Phase 4: Side-by-side comparison

Phase 1: Validate protocol and simultaneously evaluate reproducibility

- > Protocol
 - ✓ Manufacturers instructions
 - ✓ Exception: Test inoculum reduced from 0.5-mL to 0.25-mL
 - ✓ Seed tubes prepared and monitored until positive ≥ 4 days; <4 days redo</p>
 - ✓ PZA DST performed 1-2 days after positivity
 - ✓ Growth control tube inoculated with a 1:10 dilution


Phase 1: Validate protocol and simultaneously evaluate reproducibility

- Reproducibility
 - ✓ *M. bovis* BCG
 - Two scientists
 - Sets of five over four days
 - ✓ *M. tuberculosis* (ATCC#25177)
 - Triplicate
 - Performed over two days

Table 1 PZA DST repeatability testing and validation of reduced inoculum protocol using a clinical strain of *M. bovis* BCG and *M. tuberculosis* complex ATCC# 25177

No.	Specimen Identification	0.25-mL Inoculum PZA DST Result	Days to DST Result	Expected Result
A1	M. bovis BCG	Resistant	8	Resistant
B1	M. bovis BCG	Resistant	10	Resistant
C1	M. bovis BCG	Resistant	8	Resistant
D1	M. bovis BCG	Resistant	8	Resistant
E1	M. bovis BCG	Resistant	8	Resistant
A2	M. bovis BCG	Resistant	8	Resistant
B 2	M. bovis BCG	Resistant	8	Resistant
C2	M. bovis BCG	Resistant	9	Resistant
D2	M. bovis BCG	Resistant	11	Resistant
E2	M. bovis BCG	Resistant	9	Resistant
F1	M. bovis BCG	Resistant	8	Resistant
G1	M. bovis BCG	Resistant	6	Resistant
H1	M. bovis BCG	Resistant	8	Resistant
I1	M. bovis BCG	Resistant	7	Resistant
J1	M. bovis BCG	Resistant	6	Resistant
F2	M. bovis BCG	Resistant	8	Resistant
G2	M. bovis BCG	Resistant	7	Resistant
H2	M. bovis BCG	Resistant	7	Resistant
12	M. bovis BCG	Resistant	8	Resistant
J2	M. bovis BCG	Resistant	8	Resistant
K1	M. tuberculosis complex	Susceptible	7	Susceptible
L1	M. tuberculosis complex	Susceptible	10	Susceptible
M1	M. tuberculosis complex	Susceptible	7	Susceptible
K2	M. tuberculosis complex	Susceptible	7	Susceptible
L2	M. tuberculosis complex	Susceptible	7	Susceptible
M 2	M. tuberculosis complex	Susceptible	7	Susceptible

Phase 2: Serial dilution study

^{*}CFUs were calculated for each respective dilution tube. A decrease by 10 fold was not observed possibly due to the clumping nature of MTBC.

Phase 2: Serial dilution study (continued)

Dilution Concentration	DST Result	Days to DST Result	Expected Result
1:10	Resistant	8	Resistant
1:100	Resistant	13	Resistant
1:1,000	Resistant	18	Resistant
1:10,000	Failed*	N/A	Resistant
1:100,000	Failed*	N/A	Resistant
1:1,000,000	Failed	N/A	Resistant

^{*}Growth control tube did not grow within MGIT protocol timeframe; however, growth visible in drug challenge tube and MGIT instrument inventory readings at day 18 were both 400.

Phase 3: Test strains with established PZA results

Phase 4: Side-by-side comparison

Table 3 MGIT™ PZA DST results compared to the expected results between the standard versus reduced inoculum.

Number of strains with the following results

PZA DST Inoculum	Total Count	Both-S	Expected-S Inoculum-R	Expected-R Inoculum-S	Both-R	Overall Accuracy (%)
0.5-mL (Standard)	84	45	10	0	29	88
0.25-mL (Reduced)	84	52	3	0	29	96
Manufacturer (Liquid) ⁶	112	88	1	1	22	98

S = Susceptible

R = Resistant

Table 4 MGIT™ PZA DST performance characteristics between the standard versus reduced inoculum to correctly identify PZA resistance

PZA DST Inoculum	Sensitivity	Specificity	PPV	NPV
0.5-mL (Standard)	100 (29/29)	81.82 (45/55)	74.36 (29/39)	100 (45/45)
0.25-mL (Reduced)	100 (29/29)	94.55 (52/55)	90.63 (29/32)	100 (52/52)
Manufacturer (Liquid) ⁶	96 (22/23)	98.88 (88/89)	95.65 (22/23)	99 (88/89)

PZA DST Inoculum	Average Days to Positivity	Range	
0.5-mL (Standard)	7.13	4 - 13 Days	
0.25-mL (Reduced)	7.93	4 - 16 Days	

Table 5 Discrepant results between the two methods using the standard versus reduced inoculum for MGIT™ PZA DST

Specimen ID	DST Result 0.5-mL Inoculum	Days to result 0.5-mL Inoculum	DST Result 0.25-mL Inoculum	Days to result 0.25-mL Inoculum	Expected Result
G	Resistant	5	Susceptible	5	Susceptible
V	Resistant	7	Resistant	6	Susceptible
W	Resistant	7	Susceptible	8	Susceptible
Y	Resistant	7	Susceptible	8	Susceptible
Z	Resistant	11	Resistant	13	Susceptible
AA	Resistant	11	Susceptible	12	Susceptible
BB	Resistant	12	Susceptible	12	Susceptible
DD	Resistant	10	Resistant	10	Susceptible
HH	Resistant	9	Susceptible	11	Susceptible
II	Resistant	7	Susceptible	9	Susceptible

Conclusion

- Reduced inoculum produce comparable results
- Reduced the number of unwarranted repeat testing or forwarding of samples for confirmation by 70%
- Overall accuracy is 96% compared to the standard inoculum (0.5-mL) accuracy of 88%
- No samples tested produced false PZA-susceptible
- PZA-resistance detected at a dilution factor of
 1:1000

Future

Low-level Ethambutol (ETH) resistance

- Assuming inoculum size or the number of organisms present
- Study at what point using the reduced inoculum will a PZA-susceptible organism produce a false PZA-resistant result
- Will reducing the inoculum for PZA testing allow a more heavier load of seed tube to identify lowlevel ETH resistance

References

- 1. Chedore, P., et al. Potential for Erroneous Results Indicating Resistance When Using the Bactec MGIT 960 System for Testing Susceptibility of Mycobacterium tuberculosis to Pyrazinamide. Journal of Clinical Microbiology, 2010. 48(1):300-301.
- 2. Piersimoni, Claudio, et al. Prevention of False Resistance Results Obtained in Testing the Susceptibility of Mycobacterium tuberculosis to Pyrazinamide with the Bactec MGIT 960 System Using a Reduced Inoculum. Journal of Clinical Microbiology, 2013. 51(1):291-294.
- 3. CLSI. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard Second Edition. CLSI document M24-A2. Wayne, PA: Clinical and Laboratory Standards Institute; 2011.
- 4. Pfyffer, Gaby E., Frantiska Palicova and Sabine Rüsch-Gerdes. *Testing of Susceptibility of Mycobacterium tuberculosis to Pyrazinamide with the Nonradiometric BACTEC MGIT 960 System.* Journal of Clinical Microbiology, 2002. 40(5):1670-1674.
- 5. Chang, Kwok Chiu, Wing Wai Yew and Ying Zhang. *Pyrazinamide Susceptibility Testing in Mycobacterium tuberculosis: a Systematic Review with Meta-Analyses*. Antimicrobial Agents and Chemotherapy, 2011. 55(10):4499-4505.
- 6. BD BACTEC™ MGIT™ 960 PZA Kit [Package Insert]. Becton-Dickinson Co., Sparks, MD; 2009.
- 7. Centers for Disease Control and Prevention. Treatment of Tuberculosis,, American Thoracic Society, CDC, and Infectious Diseases Society of America. MMWR 2003; 52(No. RR-11):pg. 37.

Thank you!

Roy P. Tu'ua, M(ASCP)
Manager, Tuberculosis Unit
Missouri State Public Health Laboratory
Roy Tuua@health.mo.gov
573-751-1115