Nanoparticles in Water
What’s Coming Down the Pipe?

Michael E. Heintz, MS, JD
Senior Specialist Environmental Laboratories

2014 APHL Annual Meeting and 8th Government Environmental Laboratory Conference

June 3, 2014
Nanotechnology 101

I have no idea what you're talking about...

...so here's a bunny with a pancake on its head.
Nanotechnology 101

- Engineered nanoparticles (i.e., anthropogenic)
- One axis <= 100 nm
- An enabler
- Quantum mechanics
- Novel properties (hang on, we’ll get there)
Where is it?

- Sunscreens
- Clothing
- Sports equipment
- Medical
- Agriculture
- 1,600+ nano-enabled products
- Increasingly everywhere
The bad news...

OH, THE HUGE MANATEE!
(Mis)behavior

- Persistent in surface waters
- Pass through controls
- Not removed (mostly) by treatment systems
- Kill or inactivate beneficial bacteria
- Harmful effects on living organisms
- Unexpected interactions in nature
How much?

• Hundreds of thousands of tons/year manufactured
• Releases during production, use, and disposal
• Pathways into water
The search

• Mostly unregulated
• Could your laboratory detect in water:
 o Nanoscale silver?
 o Nanoscale titanium dioxide?
 o Carbon nanotubes or buckyballs?
• Different techniques for different characteristics
• Are you looking for it?
• Should you be?
• Is a new method needed?
Techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>Nano-object Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration</td>
</tr>
<tr>
<td>Atomic Force Microscopy</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Brunauer-Emmett-Teller</td>
<td>✓</td>
</tr>
<tr>
<td>Condensation Particle Counter</td>
<td>✓</td>
</tr>
<tr>
<td>Differential Electric Mobility Analyzing System</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Differential Scanning Calorimetry</td>
<td></td>
</tr>
<tr>
<td>Dynamic Light Scattering</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Electron Back-Scatter Diffraction</td>
<td></td>
</tr>
<tr>
<td>Electron Energy Loss Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Fluorescence Spectroscopy</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Fourier Transform Infrared Spectroscopy/Imaging</td>
<td></td>
</tr>
<tr>
<td>Induced Grating Method</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Inductively Coupled Plasma – Mass Spectrometry and Single Particle ICP-MS</td>
<td>✓ ✓ ✓</td>
</tr>
</tbody>
</table>

Adapted from Perkin Elmer's: *Nanotechnology and Engineered Nanoparticles: A Primer*
Now, the good news
Now, the good news

- Groundwater remediation
- Kill or inactivate bacteria (sound familiar?)
- Imaging enhancement
- Filter technology
- Efficient fertilizer delivery
- Field devices
- Decreased sample size and prep time
Questions? (and thanks!)
References

• Are nanoparticles a threat to our drinking water?
 http://globalwater.jhu.edu/magazine/article/are_nanoparticles_a_threat_to_our_drinking_water/

• Evaluating Nanoparticle Breakthrough during Drinking Water Treatment
 http://ehp.niehs.nih.gov/1306574/

• Silver Release from Silver Nanoparticles in Natural Waters
 http://pubs.acs.org/doi/abs/10.1021/es304023p

• The Project on Emerging Nanotechnologies: Consumer Product Inventory
 http://www.nanotechproject.org/cpi/

• Nanotechnology in Agriculture

• Nanotechnology and Engineered Nanoparticles: A Primer
 http://shop.perkinelmer.com/Content/Manuals/GDE_NanotechnologyPrimer.pdf

• Forthcoming nanotechnology white paper from ELSC