LOW CITRULLINE AS A MARKER FOR THE PROXIMAL UREA CYCLE DEFECTS
EXPERIENCE OF THE NEW ENGLAND NEWBORN SCREENING PROGRAM

Inderneel Sahai, MD, FACMG
Newborn Screening and Genetic Testing Symposium
Oct 2014
Acknowledgements

New England Newborn Screening Program
- J Bailey
- RB Eaton
- TH Zytkovicz

Massachusetts Metabolic Specialists /Centers
- C Garganta
 Tufts Medical Center, Boston
- L Hecht
 Boston Children’s Hospital, Boston
- HL Levy
 Boston Children’s Hospital, Boston
- M Martin
 University of Massachusetts Medical School, Worcester

Partner State Collaborators
- Wendy Smith
 Maine Medical Center, Portland, ME
- C Phornphutkul
 Rhode Island Hospital,
 Brown University, Providence, RI.
- L Burke
 Vermont Regional Genetics Center,
 Burlington, VT
- C Ingham
 Vermont Department of Health.
 Burlington, VT
Urea Cycle Disorders

Nitrogen Pool

Glutamate → N-acetyl glutamate (NAGS) → N-acetyl glutamate

Ammonia → Carbamoyl phosphate synthetase (CPS) → Carbamoyl phosphate

Carbamoyl phosphate transporter (Citrin) → Aspartate-glutamate carrier (Citrin) → Aspartate

Aspartate → Argininosuccinic synthetase (ASS) → Argininosuccinate

Argininosuccinate lyase (ASL) → Arginine

Arginine → Arginase (ARG) → Urea

Fumarate
Proximal Urea Cycle Disorders

- CPS (*Carbamoylphosphate synthetase*)
- OTC (*Ornithine transcarbamylase*)
- NAGS (*N-acetylglutamate synthase*)

- Acute neonatal presentation in 2/3
- Milder phenotypes (Late Onset/Intermittent forms): Progressive neurological disorder. Episodic headaches, ataxia, scotomas, sleep disturbances, behavioral abnormalities, ADD, psychosis.

- OTC is X-linked (~15% females affected)
- CPS and NAGS autosomal recessive
NENSP screening for amino acids & acylcarnitines using MS/MS since Feb 1999.

Targeted analysis with MRM.

Amino acids targeted:
Arginine, Argininosuccinic acid, Citrulline, Leucine, Methionine, Ornithine, Phenylalanine, Tyrosine, Valine

Low Citrulline cut-off introduced in 2004
Based on analysis of approximately 250,000 randomly selected newborn screening technically satisfactory specimens collected within 24 hrs to 7 days of birth during Aug 2004 to Aug 2013. Although distribution shown is log transformed, values on x-axis reconverted to actual concentrations and ratios. Mean values shown in blue; others shown are 2, 3 and 4 SD from the mean.
Positive Screens for Proximal UCDs

- Citrulline \leq 3uM

OR

- Citrulline > 3uM to \leq 3.8 &

 $\frac{\text{Citrulline}}{[\text{Tyrosine} \times \text{Methionine}]} \leq 0.002.$
Positive Screen: Categories

- **High Risk**
 - Cit ≤ 3.8 uM &
 - Citrulline/[Tyrosine x Methionine] < 0.002 &
 - Ornithine / Citrulline > 15

- **Moderate Risk**
 - Cit ≤ 3.8 uM & Citrulline/[Tyrosine x Methionine] ≤ 0.002
 - OR
 - Cit ≤ 3 uM & Ornithine / Citrulline > 15

- **Low Risk**
 - Cit ≤ 3uM & both ratios in range
1.2 Million
Screened Aug 2004 - Aug 2013
Technically satisfactory
Collected 24 hrs-7 DOL

Positive Screens (Infants) : 25

20
Initial Specimen

5
Repeat Specimen
(Initial Normal)
<table>
<thead>
<tr>
<th>Disorder</th>
<th>Birth Weight</th>
<th>NICU Status</th>
<th>Initial Screen</th>
<th>Neonatal Clinical Status</th>
<th>Follow-up</th>
<th>Repeat Screen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Age (in days)</td>
<td>Citrulline (in uM)</td>
<td>Risk Category</td>
<td>Age</td>
</tr>
<tr>
<td>OTC 1</td>
<td>3236</td>
<td>NO</td>
<td>2</td>
<td>2.82</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>OTC 2</td>
<td>3033</td>
<td>NO</td>
<td>1</td>
<td>3.32</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>OTC 3</td>
<td>2440</td>
<td>YES</td>
<td>4</td>
<td>1.79</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>OTC 4</td>
<td>4220</td>
<td>NO</td>
<td>2</td>
<td>2.8</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>OTC 5</td>
<td>4875</td>
<td>YES</td>
<td>7</td>
<td>1.13</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CPS 1</td>
<td>4005</td>
<td>YES</td>
<td>2</td>
<td>2.45</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>CPS 2</td>
<td>3657</td>
<td>NO</td>
<td>1</td>
<td>2.09</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>NAGS1</td>
<td>3930</td>
<td>NO</td>
<td>2</td>
<td>2.68</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>
Initial Specimens: False Positives

<table>
<thead>
<tr>
<th>False Positives</th>
<th>Birth Weight</th>
<th>NICU Status</th>
<th>Initial Screen</th>
<th>Neonatal Clinical Status</th>
<th>Follow-up</th>
<th>Repeat Screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 1</td>
<td>2680</td>
<td>YES</td>
<td>3 2.89 High</td>
<td>Pneumothorax, Respiratory distress, Sepsis on DOL 1 Amino acids, NH3 Normal. CPS & OTC molecular analysis negative</td>
<td></td>
<td>8 7 Normal</td>
</tr>
<tr>
<td>FP 2</td>
<td>2521</td>
<td>NO</td>
<td>2 2.77 Moderate</td>
<td>Asymptomatic.</td>
<td>Plasma citrulline persistently low.</td>
<td>8 4.67 Normal</td>
</tr>
<tr>
<td>FP 3</td>
<td>3028</td>
<td>NO</td>
<td>2 2.52 Moderate</td>
<td>Asymptomatic</td>
<td>Amino acids, NH3 Normal.</td>
<td>8 3.11 Low</td>
</tr>
<tr>
<td>FP 4</td>
<td>3235</td>
<td>NO</td>
<td>3 2.69 Moderate</td>
<td>Asymptomatic</td>
<td>Plasma citrulline low. NH3 normal Developmental delays, hypotonia, hypospadias, pulmonary stenosis.</td>
<td>...</td>
</tr>
<tr>
<td>FP 5</td>
<td>1838</td>
<td>YES</td>
<td>5 2.31 Moderate</td>
<td>Ex 32 weeker. Poor feeding</td>
<td>…</td>
<td>8 7.94 Normal</td>
</tr>
<tr>
<td>FP 6</td>
<td>2072</td>
<td>YES</td>
<td>6 1.95 Moderate</td>
<td>Ex 33 weeker. Poor feeding Bowel resection.</td>
<td>Amino acids, NH3 Normal. Immunodeficiency</td>
<td>10 6.7 Normal</td>
</tr>
<tr>
<td>FP 7</td>
<td>2510</td>
<td>YES</td>
<td>1 1.86 Moderate</td>
<td>Respiratory Distress. Hyperbilirubinemia on DOL 1 Amino acids, NH3 Normal.</td>
<td>…</td>
<td>5 7 Normal</td>
</tr>
<tr>
<td>FP 8</td>
<td>2704</td>
<td>YES</td>
<td>3 2.92 Moderate</td>
<td>Ex 35 weeker. Poor feeding Infant of diabetic mother.</td>
<td>Transient hyperammonemia. Persistent orotic aciduria. OTC molecular analysis negative</td>
<td>...</td>
</tr>
<tr>
<td>FP 9</td>
<td>3365</td>
<td>YES</td>
<td>2 2.24 Moderate</td>
<td>Ex 35 weeker. Poor feeding.</td>
<td>Aysmptomatic at 6 months of age. Moved out of state.</td>
<td>7 4.44 Normal</td>
</tr>
<tr>
<td>FP 10</td>
<td>1870</td>
<td>YES</td>
<td>3 3.13 Low</td>
<td>Ex 32 weeker.</td>
<td>…</td>
<td>8 4.36 Normal</td>
</tr>
<tr>
<td>FP 11</td>
<td>2530</td>
<td>YES</td>
<td>1 3.32 Low</td>
<td>Ex 35 weeker. Poor feeding. Hyperbilirubinemia & bloody stools.</td>
<td>…</td>
<td>5 6.23 Normal</td>
</tr>
<tr>
<td>FP 12</td>
<td>2596</td>
<td>YES</td>
<td>3 3.22 Low</td>
<td>Ex 36 weeker. Poor feeding ...</td>
<td>…</td>
<td>5 7.46 Normal</td>
</tr>
</tbody>
</table>
Repeat Specimens

- All 5 false positives
- All infants with a h/o bowel resection.
- On TPN
<table>
<thead>
<tr>
<th>OTC Male</th>
<th>Birth Weight</th>
<th>NICU Status</th>
<th>Age (in days)</th>
<th>Cit (in uM)</th>
<th>Ratios</th>
<th>Neonatal Clinical Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>2125</td>
<td>YES</td>
<td>2</td>
<td>5.02</td>
<td>C/TM</td>
<td>Presented in ER after a fall at 11 months of age. H/O mild developmental delays reported. Evaluated, observed and discharged. Returned with change in mental status a week later, with rapid decline into status epilepticus and encephalopathy from which infant could not be revived. Laboratory work-up revealed hyperammonemia, low plasma citrulline and high concentrations of urinary orotic acid. Molecular analysis revealed a novel mutation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OTC Female</th>
<th>Birth Weight</th>
<th>NICU Status</th>
<th>Age (in days)</th>
<th>Cit (in uM)</th>
<th>Ratios</th>
<th>Neonatal Clinical Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>3380</td>
<td>NO</td>
<td>2</td>
<td>13.96</td>
<td>Normal</td>
<td>Infant born before Aug 2004. Presented with a h/o developmental delay and hemiperesis at 9 months. Diganostic work-up revealed low plasma citrulline and high concentrations of urinary orotic acid. Retrospective review of newborn screening results performed. A 2nd screen collected at 6 months of age with citrulline value of 15.33 μM.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carrier OTC Female</th>
<th>Birth Weight</th>
<th>NICU Status</th>
<th>Age (in days)</th>
<th>Cit (in uM)</th>
<th>Ratios</th>
<th>Neonatal Clinical Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier OTC Female</td>
<td>2805</td>
<td>YES</td>
<td>1</td>
<td>4.86</td>
<td>Normal</td>
<td>Female sibling of OTC Case 2. Citrulline concentration in repeat (DOL 5 days) 6.67 μM. NH3 & Orotic acid normal. Plasma citrulline values in low normal range. Asymptomatic at 2 yrs.</td>
</tr>
</tbody>
</table>
Urea Cycle and Interrelated Pathways

- N acetyl glutamate
 - NAGS
- Acetyl-CoA
- Glutamine
- NH3
- α-keto glutarate
- HCO3-
- Carbamoyl phosphate
 - CPS
- Glutamate
 - NAGS
 - NH3
- Ornithine
 - OTC
- Citrulline
 - P5CD
- Glu-γ-semialdehyde
- Pyrroline-5-carboxylate
 - P5CS
- Proline

Mitochondria

Cytoplasm
Additional Disorders

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Birth Weight</th>
<th>NICU Status</th>
<th>Initial Screen</th>
<th>Neonatal Clinical Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrroline-5-Carboxylate Synthase Deficiency</td>
<td>2268</td>
<td>NO</td>
<td>2, 4.2 (-3.2 SD) Normal</td>
<td>Hypotonia and "progeroid" features reported at birth. Failure to thrive and developmental delays at 3 months. Plasma amino acids revealed low citrulline and proline. Diagnosis confirmed by sequencing of P5C Synthase deficiency.</td>
</tr>
<tr>
<td>Hyperammonemia-Hyperornithinemia-Homocitrullinuria</td>
<td>3150</td>
<td>NO</td>
<td>3, 7.7 (-1.1 SD) O/C</td>
<td>Presented with gross motor delays and spasticity in lower extremeties at 18 months of age. Chronic mild hyperammonemia identified.</td>
</tr>
</tbody>
</table>
Conclusions

- Low Citrulline can identify infants with severe proximal urea cycle defects.
- However these infants presented early in the neonatal period for NBS to prevent mortality in majority.
- Late onset forms were missed.
- Adjustments in the cut-off values of citrulline may allow detection of some late onset cases of the proximal UCD and other metabolic disorders such as pyrroline-5-carboxylate synthase.