Benefits of Culture-Independent Diagnostic Testing to Public Health: A State Perspective

Mike Rauch
Microbiologist
WI State Lab of Hygiene

InFORM Meeting
Nov 21, 2015
Objectives

- Discuss the impact of CIDT in WI
- Describe ongoing PH efforts to address CIDT
- Share WSLH experiences with CIDT and culture preservation
- Generate discussion- what is going on in other states/jurisdictions to address culture preservation and the effects of CIDT?
Advantages to CIDT Use

• Generally faster to result than traditional tests
• Classically-trained microbiologists not needed in many cases
• May be more cost-effective than traditional, conventional tests
• Syndromic-based testing approach possible with multi-target tests
• Ability to detect non-cultureable or fastidious pathogens
Advantages to CIDT Use

• Improved sensitivity and specificity?
 ▪ Compared with culture
 ▪ Need to assess the validity of the developer validation studies; specimens and/or isolates used may not have been optimal or representative of true clinical specimens

• Detection of nonviable organisms*
 ▪ If truly pathogenic or significant cause of GI illness
Disadvantages to CIDT Use

• Price of some CIDT platforms may be cost-prohibitive for laboratories
• Loss of culture isolates
 ▪ To clinical laboratories for AST
 ▪ To public health for surveillance
• Loss of classical microbiology experience; staff unable to determine when results don’t make sense
Disadvantages to CIDT Use

- Detection of nonviable organisms*
 - Are they significant; are they the cause of illness?
 - Ineffective use for test of cure; patient may shed nonviable organism or organism DNA well after the infection has passed

- Interpretation of results
 - In relation to the clinical picture of the patient
 - Significance of multiple pathogens detected?
 - Reportable conditions guidelines blurred (Confirmed, suspect or probable case?)
WSLH Efforts

- Become familiar with CIDT’s on market
- Monitor CIDT performance
- Partner with clinical laboratories
- Communicate with epidemiologists, clinical health professionals and industry
- Effectively utilize existing resources
- Explore new funding sources
Commercially-Available CIDT’s

• Know what CIDT’s are available and on the market for clinical (and public health) laboratories and laboratory systems
 ▪ Visit vendor booths at scientific meetings
 ▪ Ask for in-house demonstrations
 ▪ Communicate with industry representatives

• If resources permit, assess whether your laboratory wants to do in-house methodology assessment and/or validation
Commercially Available CIDT’s-Gastrointestinal Pathogens

- A handful are available and more are in development
- Variances in targeted GI pathogens among the available CIDT’s (Bacteria only vs bacteria, parasites and viruses)
- Common aspects
 - Same day result
 - Organism isolation and identification are not necessary for diagnosis
Which CIDT Platform?????
WSLH- Use of the Luminex xTAG GPP Assay

- Implemented and validated in-house; had existing Luminex platform which was being used for RVP and *Salmonella* molecular serotyping
- Initial screen (run weekly) of stools rec’d as part of an ongoing community-acquired GI illness study at select clinics across Wisconsin
- Occasional screen (as needed) of outbreak patient specimens at the request of the WI Division of Public Health foodborne disease epidemiologists
WSLH- Use of the Luminex xTAG GPP Assay

- Began testing in July, 2014
- Have tested a total of 418 stool specimens thus far:
 - Total of 158 positives (38%)
 - Total of 18 multiple infections detected (4%); 8 of the 18 multiples were *C. difficile* plus another pathogen; most pathogens detected in a specimen has been three
 - 25 (6%) specimens from 5 outbreaks have been tested
 - 38 (9%) specimens were indeterminate*
WSLH- Luminex xTAG GPP Assay Pathogens Detected

<table>
<thead>
<tr>
<th>Organism detected</th>
<th>Number Detected</th>
<th>Number Confirmed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus 40/41</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>C. difficile</td>
<td>35</td>
<td>NT</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>E. coli O157</td>
<td>3</td>
<td>1 (one specimen Stx-)</td>
</tr>
<tr>
<td>ETEC</td>
<td>4</td>
<td>NT</td>
</tr>
<tr>
<td>Non-O157 STEC</td>
<td>9 (all Stx1+)</td>
<td>6</td>
</tr>
<tr>
<td>Giardia</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Norovirus</td>
<td>38 (25 GII/13 GI)</td>
<td>36(2 NT)</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Salmonella</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>1</td>
<td>0 (history not suggestive)</td>
</tr>
</tbody>
</table>

*Note: No *V. cholerae* O1 or *Shigella* found as of 3/10/15*
WSLH- Luminex xTAG GPP Assay Pathogens Not Covered

- High percentage of pathogens detected have been able to be confirmed by a second method
- In addition to the detected pathogens, the following pathogens were recovered from specimens negative in the xTAG GPP Assay:
 - *Aeromonas* (7)
 - *Vibrio cholerae* non-O1 (1)
 - *Y. enterocolitica* (1)
 - *Campylobacter upsaliensis/ helveticus* (1)
 - Sapovirus (1), Rotavirus (1), Astrovirus (3)
WISCONSIN STATE LABORATORY OF HYGIENE - UNIVERSITY OF WISCONSIN

WSLH- Use of the Luminex xTAG GPP Assay with Outbreaks

- Outbreak specimen screening results:
 - Three long term care facilities (LTCF)- *C. difficile* only
 - One college student residence hall- Norovirus G1
 - One outbreak linked to raw milk consumption-multiple foodborne disease pathogens detected
 - *Campylobacter*
 - STEC
 - *Giardia*
2014 Raw Milk Outbreak

- High school football team gathering in Fall, 2014 with sharing of food and beverages
- Chocolate milk served by parents; combination of store-bought choc milk and raw milk (supplied by parents of one team player) with choc syrup added after store-bought ran out
- 38 attendees were sickened in total
- One early case seen at a local clinic was diagnosed with *Campylobacter* by RCA
2014 Raw Milk Outbreak-Continued

- *Campylobacter* was suspected but raw milk potentially contains >1 pathogen...
- WDPH epidemiologists requested Luminex xTAG GPP testing on 9 more stool specimens collected by the county health department:
 - 8 *Campylobacter* positives
 - 3 Stx1 (Non-O157 STEC) positives
 - 1 *Giardia* positive
- All pathogens confirmed by a second method
Subsequent specimens from patients implicated in the outbreak were also found positive for *Campylobacter*, STEC and *Giardia* by Luminex xTAG GPP.

In all likelihood, the STEC and *Giardia* pathogens would not have been detected had the investigation focused solely on the early *Campylobacter* RCA result and the multi-target assay not been utilized.
CIDT Performance

- If funding allows, monitor CIDT sensitivity and specificity vs conventional and/or PCR tests performed in-house
- There remain a number of questions as to the sensitivity, specificity and utility of many of the commercially available CIDT’s
- Data collation and sharing can educate public health and clinical health professionals as well as industry
Current WI Molecular CIDT Laboratories

<table>
<thead>
<tr>
<th># Number of Laboratories in WI</th>
<th>CIDT Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Verigene Enteric Pathogens Test</td>
</tr>
<tr>
<td>2</td>
<td>Luminex xTag Gastrointestinal Pathogen Panel</td>
</tr>
<tr>
<td>3</td>
<td>Biofire FilmArray Gastrointestinal Panel</td>
</tr>
<tr>
<td>3</td>
<td>Prodesse Progastro SSCS Assay</td>
</tr>
</tbody>
</table>
Salmonella Referred Isolates

- 2013: 963 isolates
- 2014: 900 isolates
- 2015*: 745 isolates

* As of 9/30/2015

WISCONSIN STATE LABORATORY OF HYGIENE - UNIVERSITY OF WISCONSIN
Salmonella Primary Stool Specimens

- 2013: 7 total, 0 CIDT
- 2014: 46 total, 38 CIDT
- 2015*: 73 total, 69 CIDT

* As of 9/30/2015

WISCONSIN STATE LABORATORY OF HYGIENE - UNIVERSITY OF WISCONSIN
Salmonella CIDT Recovery

![Graph showing the number of positive cases and percentage positive for Salmonella CIDT recovery in 2014 and 2015.*]

*As of 9/30/2015
Campylobacter Isolates vs Stools for Confirmation

- **Isolates**: Bar graph showing the number of isolates for 2013, 2014, and 2015.
- **1st CIDT Positive**: Bar graph showing the number of 1st CIDT positive cases for 2013, 2014, and 2015.
- **Combined total**: Bar graph showing the combined total for 2013, 2014, and 2015.

Data:
- **2013**:
 - Isolates: 914
 - 1st CIDT Positive: 364
 - Combined total: 1278
- **2014**:
 - Isolates: 784
 - 1st CIDT Positive: 449
 - Combined total: 1233
- **2015**:
 - Isolates: 526
 - 1st CIDT Positive: 488
 - Combined total: 1014

*As of 9/30/2015
Campylobacter Isolates vs Stools for Confirmation

<table>
<thead>
<tr>
<th>Year</th>
<th>% Isolates</th>
<th>% 1º CIDT Stools</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>72</td>
<td>28</td>
</tr>
<tr>
<td>2014</td>
<td>64</td>
<td>36</td>
</tr>
<tr>
<td>2015*</td>
<td>52</td>
<td>48</td>
</tr>
</tbody>
</table>

* As of 9/30/2015
Campylobacter CIDT+ Stools for Culture Confirmation

![Bar chart showing number of specimens and positive cases from 2013 to 2015 and Molecular CIDT as of 9/30/2015.]

As of 9/30/2015
Campylobacter CIDT+ Stools for Culture Confirmation

<table>
<thead>
<tr>
<th>Year</th>
<th>Total CIDT</th>
<th>% Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>57</td>
<td>30%</td>
</tr>
<tr>
<td>2014</td>
<td>63</td>
<td>40%</td>
</tr>
<tr>
<td>2015*</td>
<td>58</td>
<td>30%</td>
</tr>
<tr>
<td>Molecular CIDT</td>
<td>79</td>
<td>100%</td>
</tr>
</tbody>
</table>

* As of 9/30/2015
STEC CIDT+ Specimens for Culture Confirmation

<table>
<thead>
<tr>
<th></th>
<th># Specimens</th>
<th># Total Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>198</td>
<td>157</td>
</tr>
<tr>
<td>2014</td>
<td>226</td>
<td>174</td>
</tr>
<tr>
<td>2015</td>
<td>205</td>
<td>144</td>
</tr>
<tr>
<td>Molecular CIDT</td>
<td>22</td>
<td>19</td>
</tr>
</tbody>
</table>

As of 9/30/2015
STEC CIDT+ Specimens for Culture Confirmation

- Total Specimens
- % Total STEC

2013: 79
2014: 77
2015*: 70
Molecular CIDT: 86

* As of 9/30/2015

WISCONSIN STATE LABORATORY OF HYGIENE - UNIVERSITY OF WISCONSIN
STEC CIDT/Culture+ Specimens

Out of 19

- **O145**: 3
- **O157**: 5
- **O26**: 2
- **O45**: 1
- **O111**: 1
- **non-Big 6**: 3
- **PCR+ Only**: 2

As of 9/30/2015
Cryptosporidium CIDT+ Stools for DFA Confirmation

WISCONSIN STATE LABORATORY OF HYGIENE - UNIVERSITY OF WISCONSIN

* As of 9/30/2015
Cryptosporidium CIDT+ Stools for DFA Confirmation

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>% Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>2015*</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Molecular CIDT</td>
<td>84</td>
<td></td>
</tr>
</tbody>
</table>

* As of 9/30/2015

WISCONSIN STATE LABORATORY OF HYGIENE - UNIVERSITY OF WISCONSIN
June 2015 Cyclospora

- Cluster of 11 cases of *Cyclospora cayetanensis* linked to a Mexican style restaurant
- First detected by a clinical lab using BioFire.
- Clusters in WI, TX and GA ultimately linked to fresh cilantro from Puebla, Mexico.
- Likely would not have been detected in WI had the clinical laboratory not been using CIDT.
CIDT Performance/ Isolate Recovery

- Reasons for poor recovery
 - Sensitivity
 - CIDT Better than culture?
 - Viability
 - Organisms die in transit or storage
 - Non-culturable organisms
 - False-positive CIDT
 - Studies have been published questioning some of the commercially-available rapid cartridge assays, particularly RCA’s for Cryptosporidium and Campylobacter
Partner With Clinical Laboratories

• Continue to culture and submit isolates to PHL’s for surveillance
• If isolation is not possible, ask to submit positive clinical specimens to PHL’s for surveillance
 ▪ Courier service
 ▪ Shippers
 ▪ Stool kits
 ▪ Do not batch
Partner With Clinical Laboratories

- Provide guidance to clinical laboratories on CIDT issues such as:
 - Proper specimen storage, handling and shipping
 - Specimen submission to PHL
 - Submit as they are detected (avoid batching if at all possible)
- Discuss reporting issues
 - Will they get a report?
 - What if the PHL cannot isolate the suspected pathogen?
# Specimens	TOC to Receipt
Total Molecular CIDT* | 131 | 3.15
Total Culture Positive | 96 | 3.05
Total Culture Negative | 35 | 3.40

*positive at clinical laboratory for Salmonella, Shigella, Campylobacter, Aeromonas, Plesiomonas, Vibrio, Yersinia, or STEC
Days to Receipt WSLH

%Positive Culture
% Negative Culture

WISCONSIN STATE LABORATORY OF HYGIENE - UNIVERSITY OF WISCONSIN
Partner With Epidemiologists

• Discuss reporting issues
 - Multiple pathogens - what does it mean?
 - Positive CIDT but negative culture or confirmatory test - What to believe? What to count as a case?

• Communicate to epidemiologists what CIDT results mean
 - Incidental/ non-infectious vs infectious
 - Viable vs non-viable organisms
 - Long term carriage post-infection
CIDT Developer Education

- If able, discuss with CIDT developers the impact of CIDT assays on public health
- Encourage them to add public health-friendly language to the package insert
 - Continuation of culture where indicated (O157)
 - Retention and referral of specimens to PHL
- Recommend to sales representatives that they discuss with customers the importance of isolate and/or specimen preservation and the needs of public health surveillance
Utilize Existing Resources

- Available courier systems
 - In-house
 - Clinical system/hospital
 - Contract with private agency
- “Piggy-back” on developed laboratory network(s)- partnerships and communication systems are already in place
- MALDI-TOF
Utilize Existing Resources/Resource strain

- Staffing
 - Number
 - Training
 - Experience
- Priorities
 - NGS implementation/Other
- Funding
 - Limited
 - Shrinking State support
Pursue Funding Opportunities

- Epidemiology and Laboratory Capacity (ELC) grant
 - PulseNet
 - Multiple areas
- Public Health Emergency and Preparedness (PHEP) grant
- Local or state government funding (Basic agreements)
- Don’t ask, don’t receive
Prepare for the “Culture-less” Laboratory

- Address future infrastructure needs
 - Staff (re)training/hiring
 - Data management and storage needs
 - LIMS reporting and documentation needs
 - Equipment purchase, maintenance and space needs
- Development of Whole Genome Sequencing (WGS)
- Development of Metagenomics
Solutions to CIDT Issues

- Issues exist across the national PHL landscape
 - Varying degrees of jurisdictional PHL impact
 - Varying stages of implementation in each jurisdiction
- Partnership among many players is critical
- Utilize existing resources (APHL, ASM, partner laboratories) to gain answers and optimize your jurisdiction CIDT response
APHL/CDC Resources

- APHL CIDT Subcommittee
- CDC CIDT Regulatory WG
- CDC Clinical Isolate Recovery WG
Summary

• WI seeing similar effects of CIDT on foodborne disease surveillance
• CIDT can also be beneficial to PH efforts through detection of both uncommon and non-culturable pathogens and faster time to results
• Must communicate/ reach out to clinical and epi partners in your jurisdiction to keep apprised of the state of CIDT there
• APHL, CDC and ASM are being proactive to address CIDT impact
Discussion

- Have seen similar impacts of CIDT in your jurisdiction?
- What have you done to address CIDT issue?
- Any PHL using CIDT for diagnostic purposes?
- What challenges do you face now? What challenges do you foresee for the future?
Contact Info

Michael Rauch
Microbiologist
Wisconsin State Laboratory of Hygiene
465 Henry Mall Rm 303
Madison, WI 53706
michael.rauch@slh.wisc.edu
www.slh.wisc.edu
P: 608-263-3421
F: 608-265-8788