Food Source Prediction of Shiga Toxin-Producing *Escherichia coli* (STEC) Outbreaks using Demographic and Outbreak Characteristics, United States, 1998-2014

Alice White

InFORM, November 20, 2015

Introduction

- Outbreak investigation identify food safety interventions
 - Pathogen, food, contributing factors
- Identifying food vehicle is critical
 - 42% of outbreaks do not confirm food vehicle
- Data from prior outbreaks can help identify the food vehicle

Purpose

- Use existing outbreak data to develop methods and tools to more efficiently determine food vehicles
- Used Shiga toxin-producing Escherichia coli (STEC) outbreaks to describe differences in demographic and outbreak characteristics and predict food vehicles using differential characteristics

Methods

• Data source

- Electronic Foodborne Outbreak Reporting System (eFORS), 1998-2008
- National Outbreak Reporting System (NORS), 2009-2014
- Food source categories
 - Interagency Food Safety Analytics Collaboration (IFSAC) Food Categorization Scheme

Predictors

 Percent female, percent hospitalized, percent age categories (< 5 years, 5-19, 20-49, >50), multistate exposure, setting (private or non-private), season, duration, serotype

Methods

- Statistical analysis
 - Compare demographic and outbreak factors across food sources univariately
 - Build prediction model (70% derivation set)
 - Validate model (30% validation set)

Ē

Colorado Integrated Food Safety CENTER OF EXCELLENCE

Colorado Integrated Food Safety CENTER OF EXCELLENCE

Ę

Univariate Results

Predictor	Beef	Beef Dairy Leafy		P value
Gender *				
% Female	50 (34-70)	50 (33-67)	64 (56-74)	0.009
Age (years) *				
% <5	0 (0-13)	22 (0-33)	0 (0-4)	0.014
% 5-19	35 (12-61)	50 (50-67)	20 (15-33)	0.017
% 20-49	21 (0-33)	17 (0-33)	44 (30-54)	<0.001
% >50	14 (0-33)	0 (0-0)	19 (9-40)	0.002
Cases *	9 (3-17)	5 (3-9)	18 (10-33)	<0.001

* Data presented as median (IQR), p value from Kruskal-Wallis

Univariate Results

Predictor	Beef Dairy		Leafy	P value		
Setting [†]				<0.001		
Private Home	45 (52%)	14 (70%)	5 (13%)			
Non-private	33 (38%)	4 (20%)	32 (82%)			
Multistate Exposure†	31 (36%)	2 (10%)	22 (56%)	0.002		
Season‡				0.108		
Fall	17 (20%)	7 (35%)	17 (44%)			
Spring	28 (33%)	6 (30%)	8 (21%)			
Summer	34 (40%)	6 (30%)	9 (23%)			
Winter	7 (8%)	1 (5%)	5 (13%)			
Non-O157:H7 Serotype†	3 (4%)	5 (25%)	7 (18%)	0.003		
† Presented as proportion (%), p value from Chi-square						

‡ Presented as proportion (%), Fisher's Exact

Colorado *Integratei*

Prediction Model

OBSERVED OUTCOME

	Beef	Dairy	Leafy	Total	
Beef	56	7	8	71	
Dairy	2	9	0	11	
Leafy	6	0	28	34	
Total	64	16	36	116	
Sensitivity	0.88	0.56	0.78		
Specificity	0.71	0.98	0.93		

*Final model: Percent female, cases, multistate exposure, setting, season, serotype

PREDICTED OUTCOME

Discussion

- Prior outbreak data can be used to describe and model outbreaks by food source
- Prediction model accurately differentiated food sources
 - Performed better for beef and leafy outbreaks
 Performed well as a rule-out method
- Could be used for hypothesis generation and attribution

Discussion

- Limitations
 - Known sources of STEC illness
 - Outbreaks with complete data
- Future directions
 - Prospective validation
 - Alternative methods
 - Food categorization schemes
 - Other prediction rules
 - Other major pathogens

Acknowledgements

- Co-authors
 - Elaine Scallan, CSPH
 - Ed Bedrick, CSPH
 - Alicia Cronquist, CDPHE
- NORS team at CDC

Questions?