Genomics and Transcriptomics in the Clinical Microbiology Laboratory

Randall J. Olsen, M.D., Ph.D.

Director, Molecular Diagnostics Laboratory
Director, Special Testing Laboratory
Co-Director, Microbiology Laboratory
Department of Pathology and Genomic Medicine
Houston Methodist Hospital and Research Institute
Houston, Texas, USA

Association of Public Health Laboratories
June 6, 2016
The Modern Microbiology Lab

- Rapid identification of pathogenic organisms
- Detection from patient specimens or primary cultures
- Inferred antimicrobial susceptibility and virulence

- PCR/amplification based tests
- MALDI-TOF mass spectrometry
- Next Generation Sequencing

Genomic data may inform treatment decisions to improve patient care
New technologies:
Whole genome sequencing

- First bacteria genome
 H. influenzae strain Rd
 Published in 1995
 > 1 year
 > 1 million US dollars

- Today,
 1 or a few genomes can be generated within 1 day
 384 genomes can be generated in 2 weeks for ~$50/each

- The $10 microorganism genome will soon be a reality

Flow cell for the Illumina MiSeq sequencer.
A day in the life of the microbiology laboratory

- 130 samples collected from 116 patient cultures on a single day
- Aerobic bacteria, anaerobic bacteria, acid-fast bacilli and fungi
- Isolated colonies and mixed samples

Whole genome sequencing:

- Identified most “unknown” organisms (88.5% concordance with reference method)
- Detected *Mycobacterium species* in two samples 10 days before conventional methods
- Identified most organisms present in mixed samples
- Detected organisms not recovered by our routine culture based methods (e.g. *Gardnerella vaginalis*)

Whole genome sequencing could not identify:

- 10 organisms due to their absence from the reference database
- The lack of a comprehensive database of human pathogens was particularly problematic for medically important fungi

Important Research Opportunity

Whole genome sequencing of microorganisms in our clinical lab

First run as a routine clinical test: June 26, 2013

- ~400 genome sequences analyzed in the validation study
- Bacteria, fungi and influenza A virus
- >600 genomes generated as an ordered test
Routine cases

- Organisms that are slow growing, difficult to identify or can not be identified using culture based techniques
 - *Mycobacterium species* and fungus

- Organisms requiring further classification for optimal patient care or public health efforts
 - Serotyping *Salmonella enterica* and *Neisseria meningitidis*
Whole genome sequencing of microorganisms in our clinical lab

Special cases

- Organisms with unusual antimicrobial resistance
- Investigated the molecular basis of ceftaroline resistance in *S. aureus*

We investigated a highly ceftaroline resistant strain of *S. aureus* recovered from a cystic fibrosis patient.

Ceftaroline is a recently approved anti-staphylococcal agent with no reports of highly resistant stains.

Some reports suggest that ceftaroline has a structure making development of resistance unlikely.

We used whole genome sequencing to discover the molecular basis of ceftaroline resistance.
Whole genome sequencing identified the genetic basis of ceftaroline resistance

Genome sequencing identified mutations altering 2 amino acids in the active site of the penicillin binding protein 2a.

These data provide a molecular explanation for an unexpected antibiotic resistance phenotype.

Special cases

- Organisms causing unusually severe or unexpected clinical presentations
- Investigated a fatal anthrax-like infection
 (Wright, et al., Arch Pathol Lab Med, 2011)
Previously healthy male with severe pneumonia and death within 72 h

BAL on presentation
with extremely high numbers of rod-shaped bacteria

Blood culture
pure culture of *Bacillus cereus* group organisms

Wright, et al., *Arch Pathol Lab Med*, 2011
The *Bacillus cereus* group troika

Bacillus anthracis

Bacillus cereus

Bacillus thuringiensis

- Very closely related
- Difficult to classify using conventional microbiology techniques
- Mobile genetic elements (plasmids) are crucial for virulence

We performed whole genome sequencing to investigate the molecular basis of this severe, rapidly fatal infection.
Whole genome sequencing identified the causative agent

- Identified etiologic agent of the fatal Anthrax-like infection
 - *B. cereus* with anthrax toxin genes, not *B. anthracis*

- Ruled out the likelihood of bioterrorism
 - No foreign DNA or evidence of other genetic manipulation

- Guided infection control response
 - No cases of secondary transmission

Wright, et al., *Arch Pathol Lab Med*, 2011
Outbreaks caused by naturally occurring or nefariously introduced microbial agents can rapidly decimate a population and cause a public health emergency.

Large hospital based laboratories must be highly vigilant since they will likely be the first to recover the pathogen and perhaps recognize the potential for an outbreak.

To this end, our clinical laboratory has validated and implemented whole genome sequencing as a clinical test.
To assess our clinical laboratory’s ability to rapidly respond to a large-scale emergency outbreak scenario, we contrived a “fire drill” using *emm59* Group A Streptococcus (GAS) strains collected by the US CDC.

- Serotype *emm59* GAS are an uncommon cause of human infection.

- A hypervirulent *emm59* clone recently emerged to cause hundreds of severe invasive infections across Canada and some parts of the US.

- Epidemiology studies conducted by the US CDC discovered an increased number of *emm59* GAS infections in the state of Minnesota.

This study was constructed as a best case scenario:

1. A high quality, closed, well-annotated, *emm59* GAS genome is publically available.

2. The research team was familiar with this organism and had sequenced the genome of >500 strains recovered in Canada.

3. Compared to other pathogens such as *K. pneumoniae*, GAS has a small genome and few mobile genetic elements.

4. The US CDC had already collected the strains, and collaborators at the Minnesota Department of Public Health were ready to act on the genomic findings.
Are these US infections clonally related to the *emm59* GAS outbreak in Canada?

If so, what additional information can be generated in the clinical laboratory to guide patient care?

We performed whole genome sequencing, genome-wide transcript analysis and mouse virulence studies.
Timeline of the rapid-response exercise performed in our clinical laboratory

<table>
<thead>
<tr>
<th>Day</th>
<th>1 (7 AM start)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9 (7 PM end)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole-genome sequencing/Bioinformatics</td>
<td>gDNA extraction, Library preparation 1st sequencing run</td>
<td>2nd sequencing run</td>
<td>SNP discovery/Generate trees</td>
<td>SNP discovery/Generate trees</td>
<td>Ongoing analysis</td>
<td>Construct pseudo-genome</td>
<td>Gene content determination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene expression analysis</td>
<td>Select strains Start cultures Extract RNA</td>
<td>Prepare libraries</td>
<td>Sequencing runs</td>
<td>Expression analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse virulence studies</td>
<td>Select strains Prepare bacteria</td>
<td>Inoculate mice</td>
<td>Virulence studies</td>
<td>24 h exam 48 h exam 72 h exam 96 h exam 120 h exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Can we generate actionable information in a clinically relevant timeframe?

Within 3 days, we discovered:

US strains are clonally related to Canadian outbreak strains.

Five sets of genomically indistinguishable strains.

Strains recovered in Minnesota are allied with strains from two different Canadian provinces.

The genomics data informed the epidemiology investigation!

Gene expression analysis of *emm59* GAS strains recovered in the United States

3 strains selected for RNAseq:

1. Strains recovered from Minnesota to emulate a regional outbreak.
2. Strains were located on different branches of the phylogenetic tree.
3. Strains had wild-type alleles for all major regulators.

Within 8 days, we demonstrated the US strains have a highly similar genome-wide expression profile; however, they were not identical!

Gene expression analysis of *emm59* GAS strains recovered in the United States

RNAseq revealed that:

- Strain MGAS26494 unexpectedly overexpresses the genes encoding the hyaluronic acid capsule virulence factor.

- On reanalysis of the genome sequence, we discovered a deletion in the *hasABC* promoter region.

The transcriptomics data informed the genome analysis!
Gene expression analysis of emm59 GAS strains recovered in the United States

RNAseq also revealed that:

- Strain MGAS26494 overexpresses the genes encoding the yesM/N two component system.

- On reanalysis of the genome sequence, we discovered a mixed population, with ~50% of reads having a polymorphism in yesM/N.

- This mutation also explains the altered expression of 8 genes regulated by YesM/N.

The transcriptomics data informed the genome analysis!

Mouse model of invasive infection using emm59 GAS strains recovered in the United States

The animal model could be used to rapidly investigate strain virulence or test new vaccines, diagnostics and therapies!

Whole genome sequencing can be readily integrated into the routine workflow of a clinical laboratory to support patient care decisions.

We created a standard operating procedure for using genomics, transcriptomics and animal studies as part of our disaster preparedness plan.

We implemented process improvements.

Lessons Learned:
Acknowledgments

Houston Methodist Hospital
Steve Beres, PhD
Connie Cantu
Priyanka Kachroo, PhD
S. Wesley Long, MD, PhD
James Musser, MD, PhD
Misu Sanson, MD
Chandni Valson

Public Health Ontario
Nahuel Fittipaldi

Minnesota Department of Health
Ruth Lynfield, MD
Kathryn Como-Sabetti, MPH

Centers for Disease Control and Prevention
Chris Van Beneden, MD, MPH