NGS aspect to the investigation into a *Legionella* outbreak linked to a cooling tower

What Dangers are Lurking in Your Water? NextGen Sequencing Applications for Waterborne Threats
Legionella

- Fastidious (specialized media)
- Slow growing (3-10 days)
- >50 species
- 15 serogroups of *L. pneumophila* accounting for 90% of cases
- Implicated in community and hospital associated outbreaks
- Usual source of exposure is aerosol from water supply
Reported Cases of Legionellosis by year

Year

Cases

800 700 600 500 400 300 200 100 0

NYS Legionellosis
NYC Legionellosis
Total
The total number of cases reached 221, and of those, 34 had died. At the time of the outbreak, epidemiological investigation protocols did not include active participation by both the laboratory specialists and investigators.
Comparison of Ribotyping and Restriction Enzyme Analysis Using Pulsed-Field Gel Electrophoresis for Distinguishing *Legionella pneumophila* Isolates Obtained during a Nosocomial Outbreak

DIANNA SCHOONMAKER,¹* TRACEY HEIMBERGER,²,³ AND GUTHRIE BIRKHEAD²

Laboratories for Bacteriology, Wadsworth Center for Laboratories and Research,¹ and Bureau of Disease Control,² New York State Department of Health, Box 509, Albany, New York 12201, and Division of Field Epidemiology, Epidemiology Program Office, Centers for Disease Control, Atlanta, Georgia 30333³

Received 16 September 1991/Accepted 14 March 1992

Because of the ubiquity of *Legionella* isolates in aquatic habitats, epidemiologic evaluation of *Legionella pneumophila* strains is important in the investigation and subsequent control of nosocomial outbreaks of legionellosis. In this study, ribotyping and restriction enzyme analysis by pulsed-field gel electrophoresis (PFGE) were used to compare isolates of *L. pneumophila* obtained from patients and the environment during a nosocomial outbreak with unrelated control strains. Restriction enzyme analysis by PFGE resolved 14 different patterns among the *L. pneumophila* serogroup 1 and *L. pneumophila* serogroup 6 isolates involved in the study. Two of the patterns were observed in the three *L. pneumophila* serogroup 6 isolates from patients with confirmed nosocomial infections and environmental isolates from the potable water supply, which was, therefore, believed to be the source of the patients’ infections. Three more patterns that were not present in isolates from patients with legionellosis were seen in isolates from the hospital environment, demonstrating the presence of multiple strains in the hospital environment. In the outbreak, one distinct pattern occurred among the *L. pneumophila* serogroup 1 isolates from patients with nosocomial infections, suggesting a common source; however, the source could not be determined. By comparison, ribotyping generated five patterns. However, some control strains of both *L. pneumophila* serogroups 1 and 6 possessed the same ribotypes as were present in the outbreak isolates. Both techniques were used successfully to subtype the isolates obtained during the investigation of the outbreak. Furthermore, restriction enzyme analysis by PFGE was useful for subdividing ribotypes and for distinguishing strains involved in the outbreak from epidemiologically unrelated strains.

Legionella pneumophila has been recognized as an important cause of nosocomial pneumonia, particularly among patients with community-acquired disease in New York State, except for New York City. Data of legionellosis and, likewise, requires subtyping systems that can discriminate between isolates of the two serogroups (e.g., by the PFGE technique) (June to September). Most of the cases reported
Wadsworth Center Legionella testing

- **Real-time PCR assay** (DNA detection-viable and nonviable)
 - screen samples, confirm identification of isolates and detect in clinical specimens (1999)
- **Culture**
 - BCYEα, BMPAα, DGVP
 - 5% sheep blood in brain heart infusion (1977)
- **DFA** (direct fluorescent antibody detection) (1980s)
- **PFGE** (pulsed-field gel electrophoresis) (1990s)
- **WGS** (whole genome sequencing) (2015)
WGS on Legionella

- Ongoing pilot project with the CDC Legionella laboratory-AMD funding - Spring 2015
- Bioinformatics pipeline for WGS SNP analysis
- Retrospectively WGS characterized 10 *Legionella pneumophila* SG1 outbreaks
Laboratory tests used at the Wadsworth Center

- **Real-time PCR assay** (DNA detection-viable and nonviable)
 - screen samples, confirm identification of isolates and detect in clinical specimens
- **Culture**
 - BCYEα, BMPAα, DGVP
 - 5% sheep blood in brain heart infusion
- **DFA** (direct fluorescent antibody detection)
- **PFGE** (pulsed-field gel electrophoresis)
- **WGS** (whole-genome sequencing)
Collaboration on NYC Legionella Investigations

- Started assisting NYC in January 2015
- South Bronx Requests- July 2015
 - Splitting samples
 - PCR Screen
 - Remediation culture
 - Culture
 - PFGE
 - WGS
WC received specimens almost every day for 3 weeks.

Cooling Tower

Potable Water

NYC

NYS

Building Owners

Isolates

Autopsy

Specimens

Major Events in South Bronx Legionnaires' Disease Outbreak

- **DOHMH investigation starts**: Jul 20
- **DOHMH disease detectives investigate cases**: Jul 21-27
- **Cooling towers suspected; DOHMH begins sampling**: Jul 28
- **Hotel tests positive; DOHMH orders disinfection**: Jul 29
- **First Commissioner's Order issued; Hotel tested**: Jul 30
- **Hotel completes disinfection**: Aug 01
- **Last case in South Bronx cluster becomes sick**: Aug 03
- **Citywide cooling tower legislation introduced**: Aug 10
- **Commissioner orders all cooling towers in NYC to be disinfected within 14 days**: Aug 06
- **Mayor signs cooling tower legislation**: Aug 18
- **Hotel confirmed as source of outbreak**: Aug 20

Hotel = Hotel H

- 31 cases
- 44 cases
- 65 cases, 1 death
- 81 cases, 7 deaths
- 100 cases, 10 deaths
- 138 cases, 16 deaths

90% cases hospitalized
Environmental Source Identification- NYC

- Locate nearby cooling towers
- Owners not required to register cooling towers
- City administrative data
- Satellite imagery
- Reports from outside NYC
Contaminated Cooling Towers

Five buildings have been identified as the potential source of the Legionnaires' disease outbreak in the South Bronx.

- Possible sources of Legionnaires' outbreak
- Additional sites found with legionella bacteria
- Locations of people with Legionnaires'

Source: New York Mayor's Office
By The New York Times
Cooling Towers

- Large community outbreaks
- Heat from air conditioning or industrial process into water that may contain *Legionella*
- Fans transfer heat from pool to air, creating a fine mist
- Leads to bioaerosol dispersion (cases up to 12 km away)
Cooling tower sampling, receipt at lab, accessioning and water sample processing

327 cooling tower and potable water samples from 97 locations
DNA Extraction and In-house Developed Real-time PCR Testing to Screen Samples
PCR Screening Results

Available in <24 hours

<table>
<thead>
<tr>
<th>NYS IDR#</th>
<th>Facility Name</th>
<th>Date Collected</th>
<th>Sample No.</th>
<th>Sample Type</th>
<th>Source Description</th>
<th>Real-time PCR Result (H2O)</th>
<th>Comments / mip PCR CT</th>
<th>Estimate of Legionella bacteria /ml (live or dead)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDR1500054657</td>
<td>Hotel H</td>
<td>7/29/15</td>
<td>51</td>
<td>cold water</td>
<td>Cooling tower -end</td>
<td>Positive for Legionella pneumophilia serogroup 1 DNA</td>
<td>28/29 all</td>
<td>Approx 2000 CFU/ml</td>
</tr>
<tr>
<td>IDR1500054658</td>
<td></td>
<td>7/29/15</td>
<td>52</td>
<td>cold water</td>
<td>Cooling tower- middle</td>
<td>Positive for Legionella pneumophilia serogroup 1 DNA</td>
<td></td>
<td>Approx 2000 CFU/ml</td>
</tr>
<tr>
<td>IDR1500054659</td>
<td></td>
<td>7/29/15</td>
<td>53</td>
<td>cold water</td>
<td>Cooling tower-intake</td>
<td>Positive for Legionella pneumophilia serogroup 1 DNA</td>
<td></td>
<td>Approx 2000 CFU/ml</td>
</tr>
<tr>
<td>IDR1500054660</td>
<td></td>
<td>7/29/15</td>
<td>54</td>
<td>swab</td>
<td>Swab Cooling Tower -middle</td>
<td>Positive for Legionella pneumophilia serogroup 1 DNA</td>
<td></td>
<td>Approx 2000 CFU/ml</td>
</tr>
<tr>
<td>IDR1500054661</td>
<td>Supermarket</td>
<td>7/29/15</td>
<td>71</td>
<td>cold water</td>
<td>CT Back-inlet</td>
<td>Positive for Legionella pneumophilia DNA</td>
<td>36-38 all</td>
<td>Approx <20 CFU/ml</td>
</tr>
<tr>
<td>IDR1500054662</td>
<td></td>
<td>7/29/15</td>
<td>72</td>
<td>cold water</td>
<td>CT Back-enter</td>
<td>Positive for Legionella pneumophilia DNA</td>
<td></td>
<td>Can’t rule out serogroup 1 as that target is less sensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7/29/15</td>
<td>73</td>
<td>cold water</td>
<td>CT Back-outlet</td>
<td>Positive for Legionella pneumophilia DNA</td>
<td></td>
<td>Approx <20 CFU/ml</td>
</tr>
<tr>
<td>IDR1500054664</td>
<td>Concourse</td>
<td>7/29/15</td>
<td>81</td>
<td>cold water</td>
<td>Cooling Tower-return</td>
<td>Positive for Legionella species DNA, inconclusive for Legionella pneumophilia DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054665</td>
<td></td>
<td>7/29/15</td>
<td>82</td>
<td>cold water</td>
<td>Cooling Tower-inlet</td>
<td>Positive for Legionella species DNA, inconclusive for Legionella pneumophilia DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054666</td>
<td></td>
<td>7/29/15</td>
<td>83</td>
<td>cold water</td>
<td>Cooling Tower-makeup</td>
<td>Positive for Legionella species DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054667</td>
<td>Hospital, L</td>
<td>7/29/15</td>
<td>91</td>
<td>cold water</td>
<td>Cooling Tower (Indoor) Basın makeup</td>
<td>Positive for Legionella species DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054668</td>
<td></td>
<td>7/29/15</td>
<td>92</td>
<td>cold water</td>
<td>Cooling Tower (Indoor) Basın makeup</td>
<td>Positive for Legionella species DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054669</td>
<td></td>
<td>7/29/15</td>
<td>93</td>
<td>cold water</td>
<td>Cooling Tower (Indoor) Basın makeup</td>
<td>Positive for Legionella species DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054670</td>
<td></td>
<td>7/29/15</td>
<td>94</td>
<td>swab</td>
<td>Basin waterline #2</td>
<td>Positive for Legionella species DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054671</td>
<td>Verizon,</td>
<td>7/29/15</td>
<td>711</td>
<td>cold water</td>
<td>West Cell N side (CT)</td>
<td>Positive for Legionella species DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054672</td>
<td></td>
<td>7/29/15</td>
<td>721</td>
<td>cold water</td>
<td>West Cell S side (CT)</td>
<td>Positive for Legionella species DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054673</td>
<td></td>
<td>7/29/15</td>
<td>731</td>
<td>cold water</td>
<td>West Cell S side (CT)</td>
<td>Positive for Legionella species DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054674</td>
<td></td>
<td>7/29/15</td>
<td>741</td>
<td>cold water</td>
<td>West Cell S side (CT)</td>
<td>Positive for Legionella species DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054675</td>
<td></td>
<td>7/29/15</td>
<td>751</td>
<td>cold water</td>
<td>East Cell N side (CT)</td>
<td>Positive for Legionella species DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054677</td>
<td></td>
<td>7/29/15</td>
<td>761</td>
<td>cold water</td>
<td>East Cell S side (CT)</td>
<td>Positive for Legionella species DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054678</td>
<td></td>
<td>7/29/15</td>
<td>771</td>
<td>cold water</td>
<td>East Cell S side (CT)</td>
<td>Positive for Legionella species DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDR1500054679</td>
<td></td>
<td>7/29/15</td>
<td>781</td>
<td>swab</td>
<td>swab East Cell S side (CT)</td>
<td>Positive for Legionella species DNA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Legionella Culture and Confirmatory Testing for PCR-positive Samples

- Acid washing
- Heat treatment
- 4 culture plates set up

Cooling tower culture
Pulsed-field Gel Electrophoresis (PFGE)

Sequence-based Typing (SBT)

<table>
<thead>
<tr>
<th>Clinical Isolates</th>
<th>PCRplex</th>
<th>Mbs</th>
<th>fiaA</th>
<th>pilE</th>
<th>ads</th>
<th>mip</th>
<th>morpS</th>
<th>proA</th>
<th>seuA</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYPH Well Co.</td>
<td>12/26/14</td>
<td>Lp1</td>
<td>1.2*</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Montefiore</td>
<td>1/4/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>6</td>
<td>10</td>
<td>19</td>
<td>28</td>
<td>19</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Montefiore</td>
<td>5/30/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>NYPH Well Co.</td>
<td>6/16/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>1</td>
<td>15</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>NYPH Columbia</td>
<td>7/8/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Montefiore</td>
<td>7/7/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Montefiore</td>
<td>7/8/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>2</td>
<td>19</td>
<td>11</td>
<td>10</td>
<td>18</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Jacobi Medical</td>
<td>7/17/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>NYPH Columbia</td>
<td>7/22/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>5</td>
<td>1</td>
<td>22</td>
<td>15</td>
<td>6</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Jacobi Medical Center</td>
<td>Lp1</td>
<td>1.2*</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
<td>731</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental Isolates</th>
<th>PCRplex</th>
<th>Mbs</th>
<th>fiaA</th>
<th>pilE</th>
<th>ads</th>
<th>mip</th>
<th>morpS</th>
<th>proA</th>
<th>seuA</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tower</td>
<td>7/28/15</td>
<td>Lp1</td>
<td>1.*</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>1</td>
<td>15</td>
<td>13</td>
<td>207</td>
</tr>
<tr>
<td>200 E. 161 St. 11</td>
<td>7/28/15</td>
<td>Lp1</td>
<td>1.*</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>1</td>
<td>15</td>
<td>13</td>
<td>207</td>
</tr>
<tr>
<td>2950 Park Ave. 6</td>
<td>7/30/15</td>
<td>Lp1</td>
<td>1.*</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>28</td>
<td>14</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Hotel H</td>
<td>Lp1</td>
<td>1.2*</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
<td>731</td>
</tr>
<tr>
<td>1201 Lafayette st. 4</td>
<td>8/4/15</td>
<td></td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>1</td>
<td>15</td>
<td>13</td>
<td>207</td>
<td>1400</td>
</tr>
<tr>
<td>Shelter</td>
<td>8/28/15</td>
<td>Lp1</td>
<td></td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
</tr>
</tbody>
</table>

NYC and WC

CDC
Whole-genome Sequencing
All Legionella isolates underwent Illuminia Miseq sequencing, were mapped to a reference genome, SNP calling software.

SNP calling with Samtools:
Min. Depth of 20x, 95% of the reads in agreements.
Whole-genome Sequencing

• 80 samples (clinical and environmental) were sequenced by WGS over a period of 15 days (Aug. 11th to Aug. 26th)

• Philadelphia 1 is 3.4 Mb but on average only ~ 3.01 Mb of the genome (88%) can be assessed with confidence

• Assessment of other reference genomes and analysis
However, historic isolates and East Bronx investigation complicate the story.

2 clinical and 1 environmental samples from 2011/2012 NY Nursing Care Center East Bronx patients.

August NYS College Staff Housing Cooling Tower

East Bronx patient?

1100 SNPs

0-6 SNPs
Pulsed-field Gel Electrophoresis (PFGE)

Both PFGE and SBT worked well in this outbreak, however, they could not discriminate these closely related strains.

Sequence-based Typing (SBT)

<table>
<thead>
<tr>
<th>Clinical Isolates</th>
<th>Date of Culture</th>
<th>PCRplex</th>
<th>Mba</th>
<th>flaA</th>
<th>pilE</th>
<th>sad</th>
<th>mpo</th>
<th>mompS</th>
<th>proA</th>
<th>seuA</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYPH Well C.</td>
<td>12/26/14</td>
<td>Lp1</td>
<td>1.2*</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Montefiore</td>
<td>1/4/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>6</td>
<td>10</td>
<td>19</td>
<td>28</td>
<td>19</td>
<td>4</td>
<td>11</td>
<td>763</td>
</tr>
<tr>
<td>Montefiore</td>
<td>5/30/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
<td>731</td>
</tr>
<tr>
<td>NYPH Well C.</td>
<td>6/16/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>1</td>
<td>15</td>
<td>13</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>NYPH Columb</td>
<td>7/8/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
<td>731</td>
</tr>
<tr>
<td>Montefiore</td>
<td>7/7/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
<td>731</td>
</tr>
<tr>
<td>Montefiore</td>
<td>7/8/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>2</td>
<td>19</td>
<td>11</td>
<td>10</td>
<td>18</td>
<td>1</td>
<td>2</td>
<td>289</td>
</tr>
<tr>
<td>Jacobi Med.</td>
<td>7/17/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
<td>731</td>
</tr>
<tr>
<td>NYPH Columb</td>
<td>7/22/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>5</td>
<td>1</td>
<td>22</td>
<td>15</td>
<td>6</td>
<td>10</td>
<td>6</td>
<td>109</td>
</tr>
<tr>
<td>Jacobi Medical C.</td>
<td>Lp1</td>
<td>1.2*</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
<td>731</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental Isolates</th>
<th>Location</th>
<th>Date of collection</th>
<th>PCRplex</th>
<th>Mba</th>
<th>flaA</th>
<th>pilE</th>
<th>sad</th>
<th>mpo</th>
<th>mompS</th>
<th>proA</th>
<th>seuA</th>
<th>ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tower</td>
<td>7/28/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>1</td>
<td>15</td>
<td>13</td>
<td>207</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>200 E. 161 St. 1</td>
<td>7/28/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>1</td>
<td>15</td>
<td>13</td>
<td>207</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>2950 Park Ave. 1</td>
<td>7/30/15</td>
<td>Lp1</td>
<td>1.2*</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>28</td>
<td>14</td>
<td>11</td>
<td>11</td>
<td>487</td>
<td></td>
</tr>
<tr>
<td>Hotel H</td>
<td>Lp1</td>
<td>1.2*</td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
<td>731</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1201 Lafayette St. 4</td>
<td>8/4/15</td>
<td>Lp1</td>
<td></td>
<td>11</td>
<td>14</td>
<td>16</td>
<td>1</td>
<td>15</td>
<td>13</td>
<td>207</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>Shelter</td>
<td>8/28/15</td>
<td>Lp1</td>
<td></td>
<td>7</td>
<td>10</td>
<td>17</td>
<td>12</td>
<td>29</td>
<td>11</td>
<td>9</td>
<td>731</td>
<td></td>
</tr>
</tbody>
</table>

NYC and WC

CDC
A second Cooling Tower detected later in the outbreak shared the same PFGE pattern

- **Shelter P**
 - \(n = 33 \)

- **Hotel H**
 - \(n = 56 \)

- Both clusters highly unlikely by chance alone
Persistent endemic strain in NYC?

Minimum Spanning Tree
Using Closed Genome South Bronx Strain

South Bronx outbreak cluster (2015)

41 Clinical and 5 Environmental Samples

Persistent endemic strain in NYC?
What if we missed other strains in the sampling and culture?

- Cooling tower samples stored at 4°C (4-5 months)
- Perform culture, LPSG1 detection
- Send all isolates to PFGE and WGS
Cooling Tower Legionella heterogeneity?

- Re-processed 46 cooling tower samples

- 170 isolates of *Legionella*
 - 124 *L. pneumophila* SG1

- 18 PFGE patterns detected
 - Shared patterns
 - LpnS13315 (EC, CP)
 - LpnS13317 (EC, LH, CP, TSC)
 - Outbreak pattern: LpnS13203
 - Shelter

- 72 Submitted for WGS

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of PFGE Patterns</th>
<th>Unique Patterns</th>
<th>Shared Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>College E</td>
<td>9</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Hotel H</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Shelter</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hospital L</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Plaza</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SP</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HS</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Two Story Commercial</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bank Building</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
Cooling Tower Legionella heterogeneity?

Heterogeneity was observed.

South Bronx outbreak strain was not found in a different cooling tower.
Come visit our Posters

P-032
A Collaborative Laboratory Response to Legionnaires’ Disease in New York City

Presenter: Scott Hughes, New York City Department of Health & Mental Hygiene, New York, NY, Phone: 212.447.6121, Email: shughes@health.nyc.gov

P-020
A Comprehensive Testing Approach to Detect and Characterize Legionella pneumophila serogroup 1 in Autopsy Specimens During a Large New York City Outbreak
Acknowledgements

BACTERIOLOGY LABORATORY

Pascal LaPierre
Liz Nazarian

BIODEFENSE LABORATORY

APPLIED GENOMIC TECHNOLOGIES CORE

NYC PHL- Jen Rakeman, Scott Hughes
NYC Epidemiology- Don Weiss, Robert Fitzhenry
NYSDOH
NYS CEH

CDC Pneumonia Response and Surveillance Laboratory (NCIRD/DBD/RDB)- Brian Raphael
Isaac Benowitz, MD