Automation of the *in situ* Dried Blood Spot Screening Assay for Severe Combined Immunodeficiency

2016 NBS and Genetic Testing Symposium

Laura Hancock, M.S.
Molecular Quality Improvement Program
Newborn Screening and Molecular Biology Branch,
Division of Laboratory Sciences
NCEH, CDC
Molecular Test Identifies Babies with Severe Combined Immunodeficiency (SCID)

- Mutation in one of 25+ genes
 - Non-functional immune system
 - Curable by a bone marrow transplant in the first few months of life
 - Early treatment prevents premature death and reduces medical costs associated with severe infections

- SCID detected by screening for T cell receptor excision circle (TREC)
 - Extrachromosommal DNA excised during T cell maturation
 - Excised DNA circularizes and the signal joint is unique in the human genome providing a target for detection
 - Immune defect that affects T cell production in newborns will cause a decrease or absence of TREC's
Methods Chosen by U.S. State Programs to Detect SCID

- Extracted DNA/real-time TREC: 49.1%
- In situ TREC: 28.3%
- TBD: 11.3%
- EnLite Neonatal TREC system – Perkin Elmer: 11.3%
NBS Molecular Resources Website to Find Methods and Automation Currently Used in NBS

NBS AUTOMATION METHODS

This section can be used to search the different types of automation instruments that are available, learn about how automation is currently being used in NBS programs and find questions to ask when purchasing a liquid handler. Access to the Automation Methods are restricted to NBS lab directors and their delegates.

Find the Liquid Handling Instrument that Fits Your Needs:

Liquid Handling Options

Automation Methods

Questions to Ask When Purchasing a Liquid Handler (Click headers to expand)
In situ Assay for Severe Combined Immunodeficiency Automated Method Flow Chart

1. Add wash buffer to 96 well plates 1 - 4
2. Centrifuge
3. Mix wash buffer by pipetting
4. 5 minute 40 sec incubation
5. Mix wash buffer by pipetting then remove buffer
6. Add PCR Master Mix
Deck layout for automated in situ TREC assay
Automated In situ TREC assay Timeline: Addition of Wash Buffer

- **125µl Generation Solution 2 added to all 96 well plates (1 to 4)**
- **Instrument pauses for Centrifugation**
 - Centrifuge at 2250g for 5 seconds
Automated *in situ* TREC assay Timeline: Mixing with 96 Well Head

0:00 | 4:42 | 11:00 | 30:00 min

- Wash using 96 well head using a “tip mix”
 - Each plate has a designated tip box
 - Punches are rarely lost due to intricate tip movement
All plates undergo a second “tip mix”
Solution 2 is removed – punches are ready for PCR master mix
Master Mix added in a multi-dispense steps
- 15µl dispensed per well by column

Selective tip pipetting head allows master mix dispense into partial plates
- Eliminates unnecessary waste of master mix

Seal plates for run

Automated *in situ* TREC assay Timeline:
Addition of PCR MasterMix

0:00 | 18:46 | 30:00 min
PCR Master Mix Volume Variation ($\pm 4 \mu l$) Does Not Affect *in situ* TREC Assay Results

- Replicate 2.0 mm punches of same sample prepared
- Different volumes of PCR Master Mix manually added

- No significant difference in Cq values between 11 – 19 µl (p>0.22)
Intra-Plate Uniformity Comparable to Manual Results

95 punches of a sample were processed on one plate

<table>
<thead>
<tr>
<th></th>
<th>Automated</th>
<th>Manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Cq</td>
<td>29.80</td>
<td>29.79</td>
</tr>
<tr>
<td>CV%</td>
<td>0.91</td>
<td>1.18</td>
</tr>
</tbody>
</table>
Consistent Results Across Plates Processed Simultaneously

24 punches of a sample were processed on each of 4 plates within the same robotic run.
Reproducible Results Between Runs

- 96 replicate punches from a DBS sample distributed among 4 plates
- Same assay was repeated after 2 months

Run #1
mean = 29.65
CV% = 0.93

Run #2
mean = 29.61
CV% = 0.91
Linearity of Results Over an Extensive Range of TREC Levels

- Replicate punches of 8 DBS samples with 2-fold decreasing levels of TREC (1500 - 8 copies/µl blood)

- Results demonstrated linear regression correlation, with PCR efficiency close to 100%
No Cross-Contamination Between Samples

- DBS punches arrayed with blank punches in a checkerboard pattern in each of three PCR plates
- Processed with robotic system and tested for TREC and RNase P
- No false positive results in any of the wells containing blank punches
Summary of Automated *in situ* TREC Method

- **Beckman NX** can process up to 4-96 well plates in 30 min
 - Method validated on 1.5mm punch in Virginia (see poster #1)
 - Method has also been transferred to the PE Janus in New Jersey

- **Automated In situ TREC method** is robust and accurate
 - Variable PCR Master Mix volume (± 4 µl) does not affect results
 - Intra-plate uniformity is comparable to manual method
 - Results are consistent across plates processed simultaneously and between runs
 - Assay gives linear results over an extensive range of TREC levels

- **No Cross-Contamination Between Samples**
Acknowledgements

CDC
Jennifer Taylor*
Francis Lee
Golriz Yazdanpanah
Suzanne Cordovado

Commonwealth of Virginia
Division of Consolidated Lab Services
Richard Haughton

*currently at RTI International

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333
Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348
Email: cdcinfo@cdc.gov Web: www.cdc.gov

Use of trade names and commercial sources is for identification only and does not constitute endorsement by the U.S. Department of Health and Human Services, or the U.S. Centers for Disease Control and Prevention.

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.