Haemophilus influenzae and its invisibility cloak

Anna Strain | Virology Supervisor/VPD Reference Center Coordinator
June 5, 2018
Haemophilus influenzae

- Gram negative aerobic coccobacilli
- Pfeiffer’s Bacillus- first described in 1892; found in patient sputum
 - 1918: first thought to be causative agent of pandemic influenza
- Frequent inhabitant of the human respiratory tract
- Capsulated and unencapsulated forms
 - Six serotypes of polysaccharide capsule (a-f)
 - Unencapsulated= “nontypeable”
- Invasive disease: meningitis, bacteremia, pneumonia, septic arthritis, cellulitis, osteomyelitis
 - Primarily capsulated; serotype B primary cause of invasive disease prior to Hib vaccine
- Non-invasive disease: bronchitis, sinusitis, otitis media
 - Primarily nontypeable

https://phil.cdc.gov/
Haemophilus influenzae type b

- Vaccine: 1985, Polysaccharide vaccine; 1990: Conjugate vaccine (better immune response)

- Prior to vaccine, 95% invasive disease caused by type b organisms
 - Leading cause of bacterial meningitis children <5
 - ~2/3 cases children <18 months
 - 15-30% suffered long-term sequellae

https://www.cdc.gov/vaccines/pubs/pinkbook/hib.html#epi
H. influenzae type b and Hib vaccines, US

- Incidence of serotype b invasive disease dropped dramatically
- Relative incidence of other serotypes increased
 - Soeters et al. Clinical Infectious Diseases 2018
- Incidence of nontypeable invasive disease increased
Incidence of invasive *Haemophilus influenzae* disease, Minnesota, 2004-2017
Incidence of invasive *Haemophilus influenzae* disease by gender and age group, Minnesota, 2017

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Cases (n=125)</th>
<th>Incidence per 100,000 persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>53</td>
<td>1.93</td>
</tr>
<tr>
<td>Female</td>
<td>72</td>
<td>2.60</td>
</tr>
<tr>
<td>Age Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under 1 yr.</td>
<td>9</td>
<td>12.87</td>
</tr>
<tr>
<td>1-4 yrs.</td>
<td>10</td>
<td>3.54</td>
</tr>
<tr>
<td>5-9 yrs.</td>
<td>2</td>
<td>0.56</td>
</tr>
<tr>
<td>10-19 yrs.</td>
<td>1</td>
<td>0.14</td>
</tr>
<tr>
<td>20-29 yrs.</td>
<td>4</td>
<td>0.55</td>
</tr>
<tr>
<td>30-39 yrs.</td>
<td>5</td>
<td>0.67</td>
</tr>
<tr>
<td>40-49 yrs.</td>
<td>4</td>
<td>0.60</td>
</tr>
<tr>
<td>50-59 yrs.</td>
<td>13</td>
<td>1.67</td>
</tr>
<tr>
<td>60-69 yrs.</td>
<td>22</td>
<td>3.52</td>
</tr>
<tr>
<td>70+ yrs.</td>
<td>55</td>
<td>9.98</td>
</tr>
</tbody>
</table>
Invasive *Haemophilus influenzae* disease by serotype, Minnesota 2017 (n=119*)

- Serotype a: 12%
- Serotype b: 2%
- Serotype e: 4%
- Serotype f: 17%
- Serotype d: 1%
- Non-typeable: 65%

* 6 case isolates not available for serotyping
Surveillance for invasive disease

• Two pathways

• NNDSS: all levels of public health

• Active Bacterial Core Surveillance (EIP)
 • Determine the incidence and epidemiologic characteristics of invasive *H. influenzae* disease
 • Monitor impact of the Hib vaccination program
 • Detect possible emergence of disease due to non-type b *H. influenzae*
 • Determine appropriate verification and validation criteria for serotyping
Bacterial VPD Reference Center testing

- *H. influenzae*
- *Neisseria meningitidis*
- *Bordetella pertussis*
Surveillance strategies vs. sneaky nontypeables

- Recommended strategy: real-time PCR for *hpd*; reflex to serotyping target

- Problem: small proportion of *H. influenzae* appear to have lost *hpd* gene target
 - Smith-Vaughan HC. 2014. Clin Vac Imm.
 - 3/16 isolates lacked *hpd* gene
 - 3% of isolates lack *hpd* gene
 - MN: 4 isolates since 2015 missing *hpd* gene
Finding those “invisible” bacteria

• MALDI-TOF: Matrix-assisted laser desorption/ionization- Time of Flight (Mass spectrometry)

• E.g. Bruker Clinical Application Systems Database

20 minutes
Outcomes and follow up

• All isolates “stop by MALDI” before heading to PCR

• WGS has confirmed deletions of *hpd* gene

• Questions for the future:
 • How common is this? Are they clonal?
 • Why did it happen? Selective advantage? Antimicrobial sensitivity?
 • Should the identification PCR be multi-target? (CDC working on new assay)
Antibiotic Resistance Laboratory Network (ARLN)

- *S. pneumoniae* is one of the ARLN pathogens.
- Two ARLN regional laboratories: Wisconsin State Laboratory of Hygiene (East) and Minnesota Department of Health (generally West).
- Each lab will test ~500 *S. pneumoniae* isolates annually collected from sterile body sites.
- Isolates are collected at hospitals, jurisdictional healthcare facilities, and state public health laboratories.
ARLN Project Goals

1. Identify antimicrobial resistance and emerging resistance traits.

2. Associate serotypes with antibiotic resistance.

3. Identify and monitor drug-resistant trends.

4. Detect vaccine escape strains.

5. Inform treatment guidelines and vaccine formulations in hopes of providing new, more effective ways to treat and prevent infections.
Isolate recruitment from healthcare facility labs

• All labs are invited to send *S. pneumoniae* isolates that meet the criteria to MDH-PHL for testing.

• Turnaround time for ID and serotyping is 5-7 days.

• AST is performed periodically in batches.

• Submitting institutions **will** receive a report containing identification and serotyping results via secure fax. However, AST results **will not** be reported to the submitter.

ARLN@cdc.gov
Submission criteria in order of priority

(from ARLN Overview, Sept. 2017)

• Isolates collected from sterile body sites from persons <12 years old.

• Invasive isolates from sterile body sites (all ages) that are resistant to any of the antibiotics in Table 1 (next slide).

• Any other isolates of concern – failed therapy, vaccine failure, or outbreak.

• We make exceptions. Not sure? Give us a call😊!
Antibiotics that generate concern when *S. pneumoniae* resistance is detected

<table>
<thead>
<tr>
<th>Table 1: Antibiotic Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifampin</td>
</tr>
<tr>
<td>Ampicillin and/or Penicillin</td>
</tr>
<tr>
<td>Ceftriaxone and/or Cefotaxime</td>
</tr>
<tr>
<td>Meropenem</td>
</tr>
<tr>
<td>Cefepime</td>
</tr>
<tr>
<td>Ceftaroline</td>
</tr>
<tr>
<td>Vancomycin</td>
</tr>
<tr>
<td>Synercid</td>
</tr>
<tr>
<td>Linezolid</td>
</tr>
</tbody>
</table>

Submit invasive isolates collected from sterile sites that are non-susceptible to **at least one** of the antibiotics listed in the table.
Acknowledgements

- Kathy Como-Sabetti, Ruth Lynfield, Paula Snipes-Vagnone, Melissa Anacker, Kristy Connors, Larry Carroll, Liz Horn
- CDC
- APHL
- VPD RCs
Thank you!

Anna Strain
Anna.strain@state.mn.us