Baby Power: Improving Congenital Adrenal Hyperplasia Screening Performance with Neonatal Characteristics

APHL Newborn Screening and Genetic Testing Symposium
April 8, 2019

Hao Tang, PhD, Lisa Feuchtbaum, MPH, DrPH, Partha Neogi, PhD, Helen Chow, PhD, Rasoul Koupaei, PhD, Stanley Sciortino, PhD
Genetic Disease Screening Program
California Department of Public Health
Current CAH screening workflow

DBS Specimen → Tier 1 Testing 17-OHP

- Positive
- Negative

Indeterminate → Tier 2 Testing 17-OHP, RCA, 21DC, 11DC

- Positive
- Negative
Genetic Disease Screening Program

CAH current cutoffs (17-OHP) and overall screening performance stratified by birth weight, 2018

<table>
<thead>
<tr>
<th>Birth Weight</th>
<th>Tier 1</th>
<th>Tier 2</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Screen Positive</td>
<td>Indeterminate</td>
<td>True Positive</td>
</tr>
<tr>
<td><1000 g</td>
<td>16</td>
<td>810</td>
<td>0</td>
</tr>
<tr>
<td>1000-1499 g</td>
<td>14</td>
<td>447</td>
<td>0</td>
</tr>
<tr>
<td>1500-2499 g</td>
<td>388</td>
<td>1134</td>
<td>1</td>
</tr>
<tr>
<td>>=2500 g</td>
<td>305</td>
<td>1090</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>723</td>
<td>3481</td>
<td>24</td>
</tr>
</tbody>
</table>

Table:

- Tier 1: Screen Positive, Indeterminate, True Positive
- Tier 2: Screen Positive, True Positive
- Overall: Screen Positive, True Positive, PPV
Our endeavor

- Identify cost-effective changes in CAH Tier 1 screening algorithm to improve overall screening performance
- Our goal: assess risk factors and cutoffs →
 - lower the number of false positives called out
 - increase overall PPV
 - Step 1. Retrospective population-based cohort analysis to identify neonatal factors associated with 17-OHP level using multiple regression.
 - Step 2. Presumptive positive only cohort analysis to simulate positive predictive value (PPV) based on the results from Step 1.
 - Identify potential cutoffs with visualizing logistic regression predictive curve
Step 1. Identify the neonatal factors for 17-OHP level

• Using 2017 California NBS data (N≈480,000), 3 random subsets of 50,000 and a 90 percentile subset (for verification purpose)

• Multiple regression model on 17-OHP (natural log transformed) and neonatal factors, including age at collection, sex, gestational age (GA), birth weight, nursery type
 – Interaction between factors also explored

• Results
 – GA is the strongest factor
 – followed by nursery type
 – birth weight is also a significant factor, but not as strong as GA
Correlation between 17-OHP and birth weight/GA

Scatter plot and regression line: birth weight (X-axis) and log 17-OHP (Y-axis)
\[R^2 = 0.10 \]

Scatter plot and regression line: GA (X-axis) and log 17-OHP (Y-axis)
\[R^2 = 0.20 \]
NICU effect

A combination of prematurity and the presence of neonatal medical conditions potentially lead to higher 17-OHP levels in NICU settings.

<table>
<thead>
<tr>
<th></th>
<th>Presumptive Positive</th>
<th>Indeterminate</th>
<th>True Positive</th>
<th>PPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>NICU</td>
<td>891</td>
<td>2954</td>
<td>7</td>
<td>0.79%</td>
</tr>
<tr>
<td>Non-NICU</td>
<td>89</td>
<td>527</td>
<td>17</td>
<td>19.10%</td>
</tr>
<tr>
<td>Total</td>
<td>990</td>
<td>3481</td>
<td>24</td>
<td>2.42%</td>
</tr>
</tbody>
</table>
17-OHP value and gestational age, by nursery type

- In both NICU and regular nursery, the earlier the GA, the higher the 17-OHP level.
- 17-OHP level is higher in NICU newborns, especially among premature babies.
- **Nursery type difference diminishes among older gestational age newborns.**
17-OHP value and birth weight, by nursery type

- 17-OHP level is higher in NICU low birth weight newborns compared to regular nursery.
- Nursery type difference diminishes among normal birth weight newborns.
- 17-OHP level does not significantly correlate with birth weight among regular nursery newborns.
Conclusion and Reflection for Step 1

• Among neonatal factors, gestational age (GA) has the strongest association with 17-OHP.
 – 17-OHP cutoff adjustment based on gestational age (GA) could lead to improved screening performance.

• Similar results are found using smaller verification subsets, including the 90 percentile sample.

• 17-OHP cutoff based on birth weight could be fine-tuned.

• Nursery type is a moderator for both GA and birth weight in relation to 17-OHP, and could be built into interpretation algorithm.
Step 2. Identify new 17-OHP cutoffs

- Using 2012-2015 and 2017 California CAH presumptive positive data (N≈4,000), confirmed true positive cases (classical) included.
 - Before 2012, gestational age (GA) data are not available
- Logistic regression predictive curve (CAH true positive = 1) sliced with nursery type and gestational age (GA) group
 - To help visualize and locate potential cutoff points
 - Two cutoffs, Tier 1 Positive and Tier 1 Indeterminate
- Using 2016 and 2018 NBS data to validate the performance of the new cutoffs.
 - Further fine-tuning if needed.
Predicting CAH true positive with 17-OHP for non-NICU presumptive positives

It's actually a PPV!

17-OHP=150
Predicting CAH true positive with 17-OHP for non-NICU presumptive positives, GA ≥ 37 weeks

Predicted Probabilities for CAH=1
With 95% Confidence Limits

Tier 1 positive
17-OHP=90

Tier 1 Indeterminate
17-OHP=60
How to spot a cutoff point using retrospective data?

• A decent PPV (Y axis value) based on the predictive curve, at least an observable PPV (> 0)

• Try not to leave too many true positives to be called out in second tier
 – Second tier testing may have false negative

• Be conservative with indeterminate cutoff
Predicting CAH true positive with 17-OHP among all NICU presumptive positives
What does the previous slide tell us?

- Overall, CAH predictive model in NICU is not “perfect”
 - PPV is not observable until 17-OHP=150
 - Difficult to spot a good point for positive cutoff
 - Too many false positives
 - Too many true positives specimens would be called out by Tier 2 testing
- Sliced by gestational age (GA) may help
 - Recall the analysis from Step 1, GA effect is stronger in NICU
Predicting CAH true positive with 17-OHP among NICU presumptive positives, GA ≤30 weeks
Predicting CAH true positive with 17-OHP among NICU presumptive positives, GA 31-36 weeks

Observable

17-OHP = 75
17-OHP = 130

Predicted Probabilities for CAH True Positive, NICU and GA 31-36 Weeks
Potential CAH Tier 1 interpretation algorithm based on nursery type and gestational age

<table>
<thead>
<tr>
<th></th>
<th>Gestational age</th>
<th>Indeterminate (nmol/L)</th>
<th>Positive (nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NICU</td>
<td><30 weeks</td>
<td>120</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>31-36 weeks</td>
<td>70</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>≥37 weeks</td>
<td>65</td>
<td>90</td>
</tr>
<tr>
<td>Non-NICU</td>
<td><37 weeks</td>
<td>80</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>≥37 weeks</td>
<td>55</td>
<td>90</td>
</tr>
</tbody>
</table>

Current birth weight-based cutoffs

<table>
<thead>
<tr>
<th>Birth weight</th>
<th>Indeterminate</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td><1000 g</td>
<td>80</td>
<td>300</td>
</tr>
<tr>
<td>1000-1499 g</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>1500-2499 g</td>
<td>55</td>
<td>80</td>
</tr>
<tr>
<td>>=2500 g</td>
<td>50</td>
<td>70</td>
</tr>
</tbody>
</table>
The RESULTS: 1st Tier after suggested cutoff

- Using 2016 and 2018 NBS data (N ≈ 1 million screened) as testing datasets, the new cutoffs would yield:
 - 75% reduction in 1st tier presumptive positives (PP).
 - 60% reduction in indeterminate cases for 2nd tier testing.
 - 95% of true positive cases would be called out in the first tier.
 - No missing cases (0 false negative)
 - PPV could increase 400% after 2nd tier screen positives are counted.

<table>
<thead>
<tr>
<th>Year</th>
<th>Indeterminate</th>
<th>1st Tier PP</th>
<th>Indeterminate</th>
<th>1st Tier PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>3315</td>
<td>660</td>
<td>1260</td>
<td>168</td>
</tr>
<tr>
<td>2018</td>
<td>3481</td>
<td>723</td>
<td>1455</td>
<td>171</td>
</tr>
</tbody>
</table>
Conclusions and discussion

• Our existing framework of using birth weight-specific cutoffs is reasonable but needs improvement.
 – 17-OHP is a reliable biomarker for CAH screening except for premature newborns in NICU. (If practical, a re-draw would be desirable.)

• Modifying cutoffs by taking nursery type and gestational age into consideration can significantly reduce false positives and increase PPV.
 – Similar process can be used to find new cutoffs for different birth weight groups.