Hemoglobin Variant Reporting in Newborn Screening

Mary Rindler, MS CGC, Paul Ince, Erinn Hardin AAS, Robyn Weaver, Andreas Rohrwasser, PhD, MBA, Kim Hart, MS CGC
Hemoglobinopathies Overview

- Hemoglobin disorders include sickle cell disease, alpha thalassemia, and beta thalassemia
- Prevalence of Hgb carriers between 5% and 20%
 - African American – 10% with sickle cell trait
- Newborn Screening began testing in the 1970s
- Utah began screening in 2001
Utah Hemoglobin Newborn Screening

- First screen – isoelectric focusing
- Second screen – isoelectric focusing and HPLC if IEF abnormal
- Utah reports FAU – Carriers of unidentified variants
 - Recommend complete blood count (CBC) and hemoglobin evaluation using HPLC between 6-9 months of age
Quality Improvement Study: Cases in 2017 identified with FAU

- 227 requests
- 120 responses
- 101 results
- 12 abnormal
Results

- 12 abnormal
 - Hb N-Baltimore
 - Hb I
 - Hb J-Baltimore
 - Hb J-Toronto
 - Hb J-Broussaid
 - Hb Manitoba
 - Hb Other (44%) – no further testing completed to identify
 - Hb Other (45.4%) – no further testing completed to identify
 - Hb Other (23.1%) – no further testing completed to identify
 - CBC – microcytosis referral to Hematology
 - 2 cases: persistent of fetal hemoglobin
Hemoglobin I

1st NBS IEF – FU(Fast)AU(Fast)
2nd NBS IEF – FU(Fast)AU(Fast)
HPLC - FA

Confirmatory/Diagnostic Testing Results

<table>
<thead>
<tr>
<th>CBC</th>
<th>Results</th>
<th>Ref range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit</td>
<td>34.8</td>
<td>33-39</td>
</tr>
<tr>
<td>MCV</td>
<td>79.8</td>
<td>70-86</td>
</tr>
<tr>
<td>MCH</td>
<td>26.6</td>
<td>23-31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hemoglobin</th>
<th>Results (%)</th>
<th>Ref Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin A</td>
<td>75.8% (L)</td>
<td>86.1-97.2</td>
</tr>
<tr>
<td>Hemoglobin A2</td>
<td>2.3%</td>
<td>1.9-3.5</td>
</tr>
<tr>
<td>Hemoglobin F</td>
<td>1.4%</td>
<td>0.6-11.6</td>
</tr>
<tr>
<td>Hemoglobin Other</td>
<td>20.5% (H)</td>
<td>0-0</td>
</tr>
</tbody>
</table>

DNA results – \textit{HBA2}: c.49A>G; Lys16Glu – likely benign
Hemoglobin N-Baltimore

1st NBS IEF – FU(Fast)A

2nd NBS IEF – FU(Fast)A

HPLC - FA

Confirmatory/Diagnostic Testing Results

<table>
<thead>
<tr>
<th>CBC</th>
<th>Results</th>
<th>Ref range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematocrit</td>
<td>34.1</td>
<td>33-39</td>
</tr>
<tr>
<td>MCV</td>
<td>83.4</td>
<td>70-86</td>
</tr>
<tr>
<td>MCH</td>
<td>27.9</td>
<td>23-31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hemoglobin</th>
<th>Results (%)</th>
<th>Ref Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin A</td>
<td>49.7% (L)</td>
<td>85-97</td>
</tr>
<tr>
<td>Hemoglobin A2</td>
<td>2.6%</td>
<td>1.9-3.5</td>
</tr>
<tr>
<td>Hemoglobin F</td>
<td>3.7%</td>
<td>0-8.5</td>
</tr>
<tr>
<td>Hemoglobin Other</td>
<td>44% (H)</td>
<td>0-0</td>
</tr>
</tbody>
</table>

DNA results – \textit{HBB}: c.286A>G; p.Lys96Glu – likely benign
Conclusion

• Most Unidentified Hemoglobin Variants are benign, **however not all**
 • Associated with aberrant HbA1c values affecting diagnosis/treatment of diabetes
 • Hemolytic anemia/splenomegaly – Ex. Hb Brevedent
 • Hemolytic mild chronic anemia – Ex. Hb I-Toulouse

• Hb “Other” persistent at the 9 month period
Is HPLC a suitable primary screening method?
Considerations

• DNA analysis to confirm variant to determine clinic symptoms

• New updates to Utah NBS process
 • IEF as first screen
 • HPLC as second screen for abnormal results

• Alternatives
 • Repeat IEF on second screen if results are divergent
 • Sequencing

• Report obvious FAU bands with same recommendations