TB SEQUENCING IN MASSACHUSETTS

Laboratory Aspects of TB

July 13, 2022

Tracy Stiles
Microbiology Division Director, Massachusetts State Public Health Laboratory
TB testing in Massachusetts

• Only full-service TB lab in Massachusetts
• 17,000 specimens annually
• 10,000 patients
• 150-250 new cases of TB annually
• 1 MDR in 2021
• 2022: 1 MDR and 1 pre-XDR
Sequencing Timeline

2016

PulseNet: Listeria mainly, STEC and Sal

2018

Legionella Unknown Respiratory Pathogens (URP)

PulseNet announcement — live sequencing in 2019
Began to explore CRO to support Epi investigations

2020

Live with PulseNet in January 2019
Real time sequencing and uploading of all PulseNet pathogens
- CLIA validated BRR and Rabies training
WNV Sequencing

2022

COVID

TB Sequencing Development

MDRO
Sequencing of all ARLN and HAI
CLIA validated wet lab
Began to explore TB
Sequencing Volumes to date

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PulseNet</td>
<td>447</td>
<td>951</td>
<td>1017</td>
<td>1462</td>
<td>951</td>
<td>1149</td>
<td>433</td>
<td>6410</td>
</tr>
<tr>
<td>GenomeTrakr</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>2</td>
<td>34</td>
<td>231</td>
<td>118</td>
<td>397</td>
</tr>
<tr>
<td>AR (CRO)</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>54</td>
<td>206</td>
<td>248</td>
<td>99</td>
<td>617</td>
</tr>
<tr>
<td>HAI (GAS/MRSA)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>17</td>
<td>25</td>
<td>30</td>
<td>81</td>
</tr>
<tr>
<td>TB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>674</td>
<td>7481</td>
<td>2428</td>
<td>10583</td>
</tr>
<tr>
<td>Monkeypox</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Rabies</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>31</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>Other*</td>
<td>29</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>13</td>
<td>289</td>
<td>4</td>
<td>355</td>
</tr>
<tr>
<td>Total</td>
<td>447</td>
<td>963</td>
<td>1027</td>
<td>1527</td>
<td>1906</td>
<td>9202</td>
<td>3114</td>
<td>18186</td>
</tr>
</tbody>
</table>

* Legionella, Burkholderia cepacia complex, Achromobacter, Yersinia, Neisseria meningitidis, Neisseria gonorrhoea*
Wet Lab Procedure

*Validation Pending...

BSL-3/TB Lab

Heat Inactivation
- Solid: 1000uL LC-MS grade water
 - Half-loop (10uL loop) growth
 - Swirl, Vortex, Spin
 - 100°C +/- 5°C for 30 minutes

Extraction
- Liquid: 1.2mL from the bottom
 - Spin >13000rpm for 3 minutes
 - Remove sup, resuspend pellet
 - 1000uL LC-MS grade water
 - Vortex, Spin
 - 100°C +/- 5°C for 30 minutes

Library Prep
- Nextera XT (4-5 hours)
 - tagmentation,
 - amplification,
 - normalization,
 - pooling

BSL-2/Sequencing Lab

Heat Inactivation

Extraction

Library Prep
Experimenting with Extractions

A ("small" loop, X), B ("medium" loop, 2X), C ("large" loop, 3X)

<table>
<thead>
<tr>
<th>Extraction Procedure</th>
<th>Concentration</th>
<th>Nanodrop Reading</th>
<th>Qubit Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Ranges</td>
<td></td>
<td>1.75-2.05</td>
<td>>1ng/uL</td>
</tr>
<tr>
<td>DNeasy Gram positive protocol - Solid Culture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1.7</td>
<td>3.53 ng/ul</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.76</td>
<td>25.5 ng/ul</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.69</td>
<td>44.6 ng/ul</td>
<td></td>
</tr>
<tr>
<td>FastPrep24/InstaGene Protocol - Solid Culture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1.19</td>
<td>2.64 ng/ul</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.87</td>
<td>16.8 ng/ul</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.74</td>
<td>31.4 ng/ul</td>
<td></td>
</tr>
<tr>
<td>FastPrep24/InstaGene Protocol - 7H9 Broth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1.86</td>
<td>4.03 ng/ul</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.76</td>
<td>7.90 ng/ul</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.21</td>
<td>19.8 ng/ul</td>
<td></td>
</tr>
</tbody>
</table>
Sequencing Capacity

4 Illumina MiSeq
1 Illumina NextSeq 550
1 Illumina iSeq
1 Clear Labs instrument
1 ONP MinION

Illumina MiSeq
500 cycle v2 kits
Tb genome 4.4 Mbp
16 per cartridge
1-2 cartridges/week when live

Goal: Mixed runs on the NextSeq
APHL AIMS Platform Pilot of Wadsworth TB Pipeline

• Project in work 2019-2022
• WC shared pipeline
• 3 pilot state labs now have access - FL, MA, NC
• Available soon at Datapult
Piloting the AIMS (NY) Pipeline

- 615 Sequences have been analyzed
 - 574 raw data files from MI
 - 41 sequenced in MA and analyzed in parallel
- MI: NextSeq/MA: MiSeq
 - Early issues with fastq files generated from the NextSeq since resolved
Piloting the AIMS (NY) Pipeline: lineage determination

Count of Samples by Lineage

- Lineage 1 (Indo-Oceanic)
 - Count: 5
- Lineage 2 (Beijing)
 - Count: 11
- Lineage 3 (Central-Asian)
 - Count: 1
- Lineage 4 (Euro-American)
 - Count: 24

Lineages: Lineage 1 (Indo-Oceanic), Lineage 2 (Beijing), Lineage 3 (Central-Asian), Lineage 4 (Euro-American)
Analysis Comparison-Lineage

Count of Samples by Lineage

<table>
<thead>
<tr>
<th>Lineage</th>
<th>MA</th>
<th>MI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineage 1 (Indo-Oceanic)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Lineage 2 (Beijing)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Lineage 3 (Central-Asian)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lineage 4 (Euro-American)</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

Lineage:
- Lineage 1 (Indo-Oceanic)
- Lineage 2 (Beijing)
- Lineage 3 (Central-Asian)
- Lineage 4 (Euro-American)
Genotypic vs Phenotypic Susceptibility

- 8/41 contained molecular resistance genes
- 4 failed coverage at a target site
 - unable to determine resistance
- 1 discordant result

<table>
<thead>
<tr>
<th></th>
<th>WGS Resistance (MA)</th>
<th>Conventional DST</th>
<th>WGS Resistance (MA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Isoniazid=RESISTANT, Ethionamide=RESISTANT</td>
<td>Isoniazid,</td>
<td>Isoniazid,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ethionamide R</td>
<td>ethionamide R</td>
</tr>
<tr>
<td>2</td>
<td>Isoniazid=RESISTANT, Streptomycin=Not Determined, Kanamyc</td>
<td>Isoniazid R</td>
<td>Isoniazid R</td>
</tr>
<tr>
<td></td>
<td>cin/Amikacin=Not Determined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Streptomycin=RESISTANT</td>
<td>Strep R</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Streptomycin=Not Determined</td>
<td>pan S</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Isoniazid=RESISTANT, Ethionamide=RESISTANT</td>
<td>Isoniazid,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ethionamide R</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Streptomycin=RESISTANT</td>
<td>pan S</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Streptomycin=Not Determined</td>
<td>pan S</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Streptomycin=Not Determined</td>
<td>pan S</td>
<td></td>
</tr>
</tbody>
</table>
Next Steps

<table>
<thead>
<tr>
<th>Wet Lab</th>
<th>Analysis</th>
<th>QC</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimize and validate extraction and library prep from primary clinical specimens</td>
<td>Pipeline is command line heavy; make user friendly; parse out the summary section</td>
<td>Finalize QC metrics and run acceptance criteria</td>
<td>What goes into the LIMS</td>
</tr>
<tr>
<td>V2 chemistry vs v3 chemistry</td>
<td>CLIA Validation lineage and MDDR</td>
<td>Compare against theiaprok and reference free pipeline</td>
<td>Do we report to providers or epi? And How?</td>
</tr>
<tr>
<td>CLIA Validation</td>
<td>How do we integrate real time surveillance?</td>
<td>Version control of pipelines</td>
<td>Concurrent testing for genotypic and phenotypic AST; messaging to providers and TB Control</td>
</tr>
</tbody>
</table>

Next Steps
Acknowledgements

MASPHL TB Lab Staff
- Jasmine Guillet
- Suzanne Rohr
- Paul Elvin

MASPHL Sequencing Team
- Matt Doucette
- Esther Fortes
- Andrew Lang
- Timelia Fink

MASPHL Management Team
- Dr. Sandra Smole
- Mary DeMartino
- Kimberly Merritt

MASPHL Research and Analytics
- Emily Tyszka

NYS Department of Public Health
Wadsworth Center
Connect with DPH

@MassDPH

Massachusetts Department of Public Health

DPH blog
https://blog.mass.gov/publichealth

www.mass.gov/dph
Questions?