Assessment of environmental and occupational exposure while working with *Mycobacterium abscessus* in mouse models

Syadatun Ahana, MPH
APHL-CDC Biorisk Management Fellow
This publication was supported by Cooperative Agreement Number NU60OE000104, funded by the US Centers for Disease Control and Prevention (CDC) through the Association of Public Health Laboratories. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC or the Association of Public Health Laboratories.
Why *Mycobacterium abscessus*?

- *Mycobacterium abscessus* (Mabs) is a rapidly growing nontuberculous mycobacterium that is responsible for:
 - respiratory infections
 - healthcare-associated extrapulmonary infections

- It is hard to treat because of its resistance to current antibiotic therapies

https://www.buzzrx.com/blog/copd-vs-ipf-idiopathic-pulmonary-fibrosis
Why Assess Exposure?

Novel experimental design
- High concentrations of inoculum
- Aerosol exposure equipment

Animal research
- Risk for immunocompromised staff
- Risk of bites and aerosolization
- Risk from animal housing and handling
Methods of Infection

1. Tail-vein Injection
 - Six C3HeB/FeJ mice
 - Oral dexamethasone treatment at 20 mg/L
 - 6 log10 CFU injected into the tail vein
 - 7H9-OADC Middlebrook broth

2. Inhalation Exposure Chamber
 - Sixteen C3HeB/FeJ mice
 - Oral dexamethasone treatment at 4 mg/L
 - 3-3.5 log10 CFU per lung
 - 7H10-OADC plates
Tail-Vein Injection Shedding Study

- Sample sites:
 - **Mouse:** Oral, anal, urine, feces
 - **Environmental:** Settling plates in BSC during euthanasia and necropsy
- Time Point: 7 days post infection (study completion)
Tail-Vein Injection Results

<table>
<thead>
<tr>
<th>Individual</th>
<th>Oral</th>
<th>Anal</th>
<th>Urine</th>
<th>Feces</th>
</tr>
</thead>
<tbody>
<tr>
<td>♂ #1</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>♂ #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♀ #1</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>♀ #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♀ #3</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>♀ #4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+= mycobacterial growth

Environmental plates were all negative
Fluorescent Microscopy of Shedding Samples

Confirmation of mCherry in all positive samples
Inhalation Exposure

• Sample sites:
 – Mouse: fur, oral, anal, and urine
 – Environmental: “hot spots,” settling plates

• Time points: Baseline, Day 1, Weeks 1, 3, 5, and 7
 – Additional if symptoms present

https://www.researchgate.net/figure/whole-body-inhalation-exposure-system-Notes-The-Glas-Col-R-aerosol-exposure-chamber_fig2_280104120
Glas-Col Inhalation Exposure System

- Preheat
- Nebulization
- Cloud Decay
- Decon.
- Cool Down
Inhalation Exposure Results

• Exposure risk from:
 – Whole body aerosol exposure
 • Baseline – *no growth*
 • Day 1 – *no growth*
 – Shedding from infected mice
 • Weeks 1, 3, 5, and 7 – *no growth*

Mouse lung infection
Takeaways

• Exposure risks can vary according to route of administration
• Different methodologies can be used to conduct evidence-based risk assessments at other institutions
• Evaluate engineering controls prior to working with higher risk organism
• Results helped confirm our internal risk assessment
The Evidence-Based Biosafety Roadmap

• Call for evidence-based biosafety
• Opportunity for fellowship training programs like NBBTP and APHL to support these projects
Acknowledgements

- Ryan Treen, Graduate Research Fellow
- David Hill, Director of Safety
- Corey Bennett, Biosafety Officer
- Dr. Anil Ojha, Principal Investigator
- Wadsworth Center
- Dr. John W. Fenton Conference Attendance Award
- Association of Public Health Laboratories
Thank you!

Syadatun Ahana, MPH
APHL-CDC Biorisk Management Fellow at the Wadsworth Center Safety Office