Hepatitis C Virus Diagnostics
Case Studies and Updates

Saleem Kamili, PhD

Division of Viral Hepatitis
Centers for Disease Control and Prevention, Atlanta, GA

2023 HIV, HCV, and Syphilis Diagnostic Testing Workshop
12 March 2023
Natural History of HCV Infection

Acute
Symptoms +/-
HCV core Ag
HCV RNA

Anti-HCV

Chronic
Symptoms +/-

ALT levels

Months after exposure

Months
Years
Markers of HCV Infection

Days after exposure

- Acute phase
- Chronic phase
- Window period

HCV RNA

Anti-HCV
FDA-approved HCV RNA Tests

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Assay</th>
<th>LoD<sup>a</sup> serum IU/mL</th>
<th>% Sensitivity [95% CI]</th>
<th>% Specificity [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hologic</td>
<td>Aptima HCV Quant Dx Assay</td>
<td>3.4</td>
<td>98.8 [96.7-99.6]</td>
<td>100 [95.4-100]</td>
</tr>
<tr>
<td>Roche Molecular</td>
<td>COBA-HCV</td>
<td>13.7</td>
<td>100.0 [97.5-100]</td>
<td>98.8 [93.3-99.8]</td>
</tr>
<tr>
<td>Abbott Molecular</td>
<td>Abbott RealTime HCV<sup>b</sup></td>
<td>12</td>
<td>N/A<sup>b</sup></td>
<td>N/A<sup>b</sup></td>
</tr>
<tr>
<td>Roche Molecular</td>
<td>COBAS AmpliPrep/ COBAS TaqMan HCV Test</td>
<td>18</td>
<td>100 [97.3-100]</td>
<td>100 [95.5-100]</td>
</tr>
<tr>
<td>Hologic (Gen-Probe)</td>
<td>VERSANT TM HCV RNA Qualitative Assay</td>
<td>7.5</td>
<td>99.7<sup>d</sup></td>
<td>97.9<sup>d</sup></td>
</tr>
</tbody>
</table>

^a LoD as assessed with the WHO IS for HCV RNA (Genotype 1a); LoDs can vary by genotype

^b Performance metrics were related to the ability of the test result to predict SRV (PPV/NPV)

^c Diagnostic claim added to P060030 per PMA supplement

^d Performance against another PCR assay

Courtesy: Silke Schlottmann (FDA)
Case Study I

HCV NAT Results

- **HCV RNA <3.4 IU/mL** (Hologic Aptima HCV Quant Dx Assay)
- **HCV RNA <13.7 IU/mL** (Roche Molecular)
- **HCV RNA <12 IU/mL** (Abbott RealTime HCV)
- **HCV RNA <18 IU/mL** (COBAS AmpliPrep/ COBAS TaqMan HCV Test)
- **HCV RNA <7.5 IU/mL** (VERSANT TM HCV RNA Qualitative Assay)

Problem: When HCV RNA levels are at the lowest limit of quantitation and are not quantifiable, results can be **misinterpreted** as if the patient is HCV RNA negative.
Antibodies to HCV

• Indicates exposure to HCV
• Present throughout acute, resolved and chronic phases of infection
• Laboratory tests
 • Enzyme immunoassays (EIAs) and Chemiluminescence assays (CIAs)
 • Serum, plasma, dried blood spot
 • Rapid diagnostic assays (RDTs)
 • Whole blood, serum, plasma
 • Confirmatory Immunoblot assays
 • Serum, plasma
Case Study II

Confirmation of anti-HCV screening test results performed by using incorrect signal-to-cutoff ratio thresholds
CDC’s HCV Testing Guidelines - 2003

Guidelines for Laboratory Testing and Result Reporting of Antibody to Hepatitis C Virus. MMWR. 2003 /52 / RR-33
CDC’s Updated HCV Testing Guidelines - 2013

- HCV antibody
 - Nonreactive
 - Never infected
 - Susceptible
 - Reactive
 - HCV RNA
 - Not detected
 - Past / Resolved infection
 - Or False positive anti-HCV
 - Detected
 - Current HCV infection
 - Additional follow-up needed

- Exposure within prior 6 months
- Other issue

MMWR. 2013;62(18)
Case Study II

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Assay</th>
<th>% Sensitivity [95% CI]</th>
<th>% Specificity [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OraSure Technologies</td>
<td>OraQuick HCV Rapid Antibody Test</td>
<td>99.5 [98.4-99.9]</td>
<td>99.0 [98.0-99.6]</td>
</tr>
<tr>
<td>Roche</td>
<td>Elecsys Anti-HCV II</td>
<td>99.6 [98.7-99.96]</td>
<td>98.8 [98.2-99.3]</td>
</tr>
<tr>
<td></td>
<td>Elecsys Anti-HCV</td>
<td>99.6 [98.5-99.5]</td>
<td>96.9 [95.9-97.7]</td>
</tr>
<tr>
<td></td>
<td>Elecsys Anti-HCV</td>
<td>99.6 [98.5-99.95]</td>
<td>97.1 [96.2-97.9]</td>
</tr>
<tr>
<td></td>
<td>Elecsys Anti-HCV</td>
<td>99.4 [98.1-99.9]</td>
<td>97.2 [96.3-98.0]</td>
</tr>
<tr>
<td>Abbott Laboratories</td>
<td>ARCHITECT anti-HCV</td>
<td>99.53 [97.4-99.99]</td>
<td>97.6 [96.5-99.8]</td>
</tr>
<tr>
<td>Siemens Healthcare</td>
<td>ADVIA Centaur HCV</td>
<td>99.9 [99.5-100]</td>
<td>97.5 [96.4-98.3]</td>
</tr>
<tr>
<td>Ortho Clinical Diagnostics</td>
<td>Vitros Anti-HCV</td>
<td>99.5 [98.7-99.9]</td>
<td>98.2 [97.5-98.8]</td>
</tr>
</tbody>
</table>

Screening Test Kit

<table>
<thead>
<tr>
<th>Test Kit</th>
<th>S/CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ortho HCV V3.0 ELISA</td>
<td>≥3.8</td>
</tr>
<tr>
<td>Abbott HCV EIA 2.0</td>
<td>≥3.8</td>
</tr>
<tr>
<td>Ortho VITROS Anti-HCV CIA</td>
<td>>8.0</td>
</tr>
<tr>
<td>Abbott AxSYM Anti-HCV MEIA</td>
<td>>10.0</td>
</tr>
<tr>
<td>Abbott Architect Anti-HCV CIA</td>
<td>>5.0</td>
</tr>
<tr>
<td>Bayer Advia Centaur HCV CIA</td>
<td>≥11.0</td>
</tr>
</tbody>
</table>

MMWR. 2003 /52 / RR-33
CDC’s Updated HCV Testing Guidelines - 2013

HCV antibody
- Nonreactive
 - Never infected
 - Susceptible

- Reactive
 - HCV RNA
 - Not detected
 - Past / Resolved infection
 - Or False positive anti-HCV

 - Detected
 - Current HCV infection

 Additional follow-up needed

MMWR. 2013;62(18)
Hepatitis Testing Guidelines - Updates
Four possible operational strategies to accomplish the two-step testing sequence to diagnose current HCV infection:

1. Blood from a subsequent venipuncture is submitted for HCV RNA testing if the blood sample collected is reactive for HCV antibody during initial testing;

2. From a single venipuncture, two specimens are collected in separate tubes, one tube for initial HCV antibody testing, and a second tube for HCV RNA testing if the HCV antibody test is reactive;

3. The same sample of venipuncture blood used for initial HCV antibody testing, if reactive, is reflexed for HCV RNA testing without another blood draw;

4. A separate blood sample is submitted for HCV RNA testing if the initial testing of HCV antibody has used fingerstick blood.

Operational strategy 1 should no longer be used as it can lead to incomplete HCV testing and gaps in the HCV care cascade.

Emily Cartwright et al. unpublished
Draft hepatitis C virus (HCV) testing recommendations for perinatally exposed infants and children

- Perinatally exposed infants should receive a nucleic acid test (NAT) for HCV ribonucleic acid (RNA) at age 2-6 months to identify children who might go on to develop chronic HCV infection
 - Infants and children aged 7-17 months who are perinatally exposed to HCV and have not previously been tested should receive a NAT for HCV RNA
 - Children aged ≥ 18 months who are perinatally exposed to HCV and have not previously been tested should receive an anti-HCV test with reflex* to NAT for HCV RNA

* A NAT for HCV RNA performed on specimens that are anti-HCV reactive

Courtesy: Carolyn Wester, DVH
Status: perinatal HCV testing recommendations

- **External peer review**
 - Completed November 16, 2022

- **Public webinar**
 - Held on December 6, 2022
 - https://www.cdc.gov/hepatitis/policy/pdfs/CDC_perinatal_hep_c_testing_508.pdf

- **Federal Register Notice:**
 - Public comment period closed January 27, 2023

Courtesy: Carolyn Wester, DVH
Next steps: perinatal HCV testing recommendations

- Winter 2022/23: Review and respond to external peer review and FRN comments

- Winter/Spring 2023: Supplemental literature review

- Summer 2023: Submit revised guidelines to CDC clearance

- Fall 2023: MMWR publication (tentative)

Courtesy: Carolyn Wester, DVH
HCV Core Antigen

• Detectable within 1-2 weeks after exposure to HCV
• Test samples
 • Serum, plasma, dried blood spots
 • Lower sample volume than NAT
 • No pristine sample needed
• Undetectable when HCV RNA <2000 IU/ml
• Abbott and Roche
POCTs for HCV RNA and HCV core Antigen

FIND Presentation at EASL 2019, Vienna
For more information, contact CDC
1-800-CDC-INFO (232-4636)

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.