Syphilis Automation: Updates on automated nontreponemal Rapid plasma Reagin (RPR) tests

Mayur Shukla, MS PhD

STD Laboratory Reference & Research Branch
Division of STD Prevention
2023 APHL HIV, HCV and Syphilis Diagnostic Workshop
March 12, 2023
Atlanta, GA
Conflict of Interest

- No conflicts of interest or financial disclosures
The diagnosis of syphilis is challenging and determining a correct stage requires “laboratory results” along with “clinical presentations/history of the disease”

Serological tests are the most commonly used for syphilis and are of two types; nontreponemal (RPR, VDRL) and treponemal tests (EIA, TP-PA)

Manual syphilis tests (e.g. RPR, TP-PA) require skilled staff to setup, perform and interpret results

Automated syphilis tests reduce hands-on time and repetitive motion injuries, minimize subjectivity with result interpretation, and benefit labs with documentation
Syphilis automation

- High-volume laboratories seeking to improve workflow lean towards “automation”
 - Reverse algorithm; automated treponemal tests
- FDA-cleared automated treponemal tests are widely used for syphilis testing
- Now we have “automated nontreponemal RPR” tests
Automated nontreponemal RPR tests

- Automated nontreponemal RPR tests were recently introduced in the United States for syphilis
 - **BioPlex 2200 Syphilis Total & RPR** (Bio-Rad Laboratories, Inc., CA)
 - **AIX 1000 agglutination RPR analyzer** (Gold Standard Diagnostics, Inc., CA)
 - **ASI Evolution automated RPR syphilis test** (Arlington Scientific, Inc., UT)
Automated nontreponemal RPR tests

- BioPlex 2200 syphilis total & RPR is based on flow immunoassay principle
- Detects treponemal (TP47/TP17) and nontreponemal (cardiolipin) antibodies
- Offers qualitative results for treponemal assay and qualitative/titer for nontreponemal assay

Source: Respective manufacturer’s website
Automated nontreponemal RPR tests

- Based on flocculation reaction like RPR
- Use cameras and proprietary hardware/software tools
- Offers qualitative/titer for nontreponemal assay

AIX 1000 RPR (Gold Standard Diagnostics, CA)

ASI Evolution (Arlington Scientific, UT)

Source: Respective manufacturer’s website
Automated nontreponemal RPR tests

Table 1 Key features of the automated RPR tests

<table>
<thead>
<tr>
<th>Parameters</th>
<th>BioPlex RPR</th>
<th>AIX 1000</th>
<th>ASI Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnaround (tests/hour)</td>
<td>200</td>
<td>192</td>
<td>190</td>
</tr>
<tr>
<td>Specimen vial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Polystyrene / polypropylene</td>
<td>Polystyrene / polypropylene</td>
<td>Polystyrene / polypropylene</td>
</tr>
<tr>
<td>Dimension (mm)</td>
<td>12 x 75</td>
<td>16 x 100</td>
<td>12 x 75</td>
</tr>
<tr>
<td>Specimen volume</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualitative / Screening (µL)</td>
<td>240</td>
<td>305</td>
<td>300</td>
</tr>
<tr>
<td>Quantitative low titer (µL)</td>
<td>285</td>
<td>394</td>
<td>290</td>
</tr>
<tr>
<td>Quantitative high titer (µL)</td>
<td>405</td>
<td>220</td>
<td>140</td>
</tr>
<tr>
<td>Titer range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low titer</td>
<td>1:4 to 1:64</td>
<td>1:1 to 1:16</td>
<td>1:1 to 1:64</td>
</tr>
<tr>
<td>High titer</td>
<td>1:128 to 1:2048</td>
<td>1:16 to 1:256</td>
<td>1:128 to 1:2048</td>
</tr>
</tbody>
</table>
Automated nontreponemal RPR tests

- These three platforms automate sample testing/reporting procedure, hence circumventing the subjectivity in interpretation
 - Record results electronically; BioPlex RPR provides antibody index value and AIX 1000/ASI Evolution capture test well images, offering added benefit with lab documentation (digital result output)
 - Minimize subjectivity in result interpretation

- Only a handful of studies are available evaluating automated RPR tests

- CDC and APHL collaborated to evaluate the performance of three automated RPR test systems assessing reproducibility, qualitative and quantitative/titer reporting
Automated nontreponemal RPR tests

- Reproducibility panel testing
 - A reproducibility panel comprised of 15 nonreactive and reactive sera (RPR titer 1:1 to 1:64) was prepared
 - Each specimen was tested 10 times at participating public health labs
 - Data analyzed and Point estimate calculated; 69 to 95%

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Nonreactive (n=2)</th>
<th>Low titer (n=4)</th>
<th>Moderate titer (n=7)</th>
<th>High titer (n=2)</th>
<th>Point Estimate % [95%CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPR Titer range</td>
<td>-</td>
<td>1:1 to 1:2</td>
<td>1:4 to 1:16</td>
<td>1:64</td>
<td></td>
</tr>
<tr>
<td>Automated RPR tests</td>
<td>% Agreement to manual RPR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BioPlex RPR</td>
<td>100</td>
<td>60 to 100</td>
<td>40 to 100*</td>
<td>100</td>
<td>68.7 (60.9 to 75.5)</td>
</tr>
<tr>
<td>AIX 1000</td>
<td>100</td>
<td>100</td>
<td>100**</td>
<td>90 to 100</td>
<td>94.7 (89.8 to 97.3)</td>
</tr>
<tr>
<td>ASI Evolution</td>
<td>100</td>
<td>30 to 100</td>
<td>70 to 100</td>
<td>80</td>
<td>86.0 (79.5 to 90.7)</td>
</tr>
</tbody>
</table>

*Two sera (1:16) were out of range (gave 4 to 8 fold higher titer) for all 10 repeated runs

**One serum (1:16) gave 4 fold lower titer for 7 out of 10 repeated runs
Automated nontreponemal RPR tests

- Quantitative Panel testing
 - A quantitative panel comprised of 50 syphilis reactive sera (RPR titer 1:64 to 1:1024) was prepared
 - For data analysis, following criteria were kept:
 • Within range: 2-fold (1 dilution) to manual RPR titer
 • Out of range: Not within 2-fold (1 dilution) to manual RPR titer

Table 3
Results of the quantitative panel testing for the automated RPR tests

<table>
<thead>
<tr>
<th>Parameters</th>
<th>BioPlex RPR</th>
<th>Automated RPR test</th>
<th>ASI Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPR titer range</td>
<td></td>
<td>AIX 1000 1:64 to 1:1024 (n=50)</td>
<td></td>
</tr>
<tr>
<td>Within range n(%)</td>
<td>32 (64)</td>
<td>47 (94)</td>
<td>34 (68)</td>
</tr>
<tr>
<td>Out of range n(%)</td>
<td>18 (36)</td>
<td>3 (6)</td>
<td>16 (32)</td>
</tr>
<tr>
<td>Spearman’s correlation coefficient (p-value)</td>
<td>0.746 (p = 5.2 × 10⁻¹⁰)</td>
<td>0.893 (p = 3.1 × 10⁻¹⁸)</td>
<td>0.162 (p = 0.262)</td>
</tr>
</tbody>
</table>
Automated nontreponemal RPR tests

Qualitative Panel testing

<table>
<thead>
<tr>
<th>Status</th>
<th>Specimen n</th>
<th>Manual RPR</th>
<th>BioPlex RPR</th>
<th>AIX 1000</th>
<th>ASI Evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Status</td>
<td>R n(%)</td>
<td>NR n(%)</td>
<td>R n(%)</td>
</tr>
<tr>
<td>Primary</td>
<td>24</td>
<td>R 19</td>
<td>18 (100)</td>
<td>0 (0)</td>
<td>18 (94.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NR 5</td>
<td>1 (25)</td>
<td>3 (75)</td>
<td>3 (60)</td>
</tr>
<tr>
<td>Secondary</td>
<td>43</td>
<td>R 41</td>
<td>37 (100)</td>
<td>0 (0)</td>
<td>40 (97.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NR 2</td>
<td>0 (0)</td>
<td>2 (100)</td>
<td>2 (100)</td>
</tr>
<tr>
<td>Early Latent</td>
<td>38</td>
<td>R 34</td>
<td>33 (97.1)</td>
<td>1 (2.9)</td>
<td>33 (97.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NR 4</td>
<td>1 (25)</td>
<td>3 (75)</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Early NPNS</td>
<td>14</td>
<td>R 14</td>
<td>11 (84.6)</td>
<td>2 (15.4)</td>
<td>14 (100)</td>
</tr>
<tr>
<td>Late Latent</td>
<td>66</td>
<td>R 57</td>
<td>47 (83.9)</td>
<td>9 (16.1)</td>
<td>55 (96.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NR 9</td>
<td>1 (11.1)</td>
<td>8 (88.9)</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td>Syphilis specimens with unknown stage</td>
<td>140</td>
<td>R 64</td>
<td>41 (82)</td>
<td>9 (18)</td>
<td>64 (100)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NR 76</td>
<td>7 (14)</td>
<td>43 (86)</td>
<td>16 (21.1)</td>
</tr>
<tr>
<td>Non-reactive or not diagnosed with syphilis</td>
<td>409</td>
<td>R 2</td>
<td>1 (100)</td>
<td>0 (0)</td>
<td>1 (50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NR 407</td>
<td>8 (3.2)</td>
<td>240 (96.8)</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Total</td>
<td>734</td>
<td>-</td>
<td>-</td>
<td>206 (33.9)</td>
<td>320 (60.8)</td>
</tr>
</tbody>
</table>

Overall Concordance % (95% CI)

- **92.6 (90.3 to 94.8)**
- **95.9 (94.5 to 97.3)**
- **94.6 (92.9 to 96.2)**

PPA % (95% CI)

- **90.6 (87.7 to 93.5)**
- **93.6 (91.5 to 95)**
- **91.3 (88.6 to 94)**

NPA % (95% CI)

- **93.9 (92 to 95.8)**
- **97 (95.9 to 98)**
- **96 (94.8 to 97.2)**

Kappa correlation % (95% CI)

- **84.5 (79.8 to 89.2)**
- **90.7 (87.5 to 94)**
- **87.3 (83.5 to 91.2)**
Summary
Summary

- Automated RPR tests have a relatively rapid turnaround of approximately 200 tests per hour (qualitative testing)
- A higher test reproducibility was recorded for AIX 1000 compared to ASI Evolution and BioPlex RPR
- Our evaluation and prior published reports collectively show promising performance of automated RPR tests, particularly for qualitative testing
- For quantitative testing, variabilities in titer reporting were recorded for automated RPR tests
- A variability in RPR titer of 4-fold or greater could have significant clinical implications
Summary

- A laboratory should know the “titer capabilities” for automated RPR tests as it varies from one automated RPR test to another.

- All reactive specimens should be diluted until an endpoint titer is achieved;
 - either by automated RPR test, or manual RPR if cannot be tittered on an automated RPR test due to instrument’s titer range limitations.

- Inaccuracy with titer reporting as < 1:4 or > 1:256 could lead to unnecessary treatment, or follow-up lab visits.
Summary

- Titer between an automated and a manual RPR should concord
- More robust the correlation between these two RPR methods, the greater confidence clinicians will have in the results when managing syphilis
- Laboratories considering a switch from manual to automated RPR should ensure that they communicate with clinicians about the potential differences between automated and manual RPR titers
Limitations

- Frozen sera (two freeze-thaw cycles) were used; warrants further testing using freshly collected sera
- Syphilis staging based on records from submitting judications, and accuracy could not be verified
- Prozone specimens were not available at the time of testing
- COVID-19 vaccines were not available at the time of testing, hence its potential interference on assay performance is negligible
- BioPlex RPR’s reagent stability issue was not evaluated (FDA Class 2 device recall 2021)
Acknowledgements

Centers for Disease Control and Prevention
 Lara Pereira
 Yongcheng Sun
 Jaeyoung Hong
 Kevin Pettus
 Alyssa Debra
 Munegowda Koralur
 Charles Thurlow
 Kiantra Butler
 Katherine Herrell
 Phoebe Gates
 Allan Pillay
 Weiping Cao
 Fakile Yetunde
 Ellen Kersh

Association of Public Health Laboratories
 Anne Gaynor

Georgia Public Health Laboratory
 Tamara Simmons
 Tonia Parrot

Oklahoma State Department of Health
 Daniel Edwards

Alabama Department of Public Health
 Curtis Andrews
 Amber Watkins
 Sharon P. Massingale
Q&A