Validation and Performance of an Orthopoxvirus Laboratory Developed Test with Early Detection of Mpox Virus in Residual Lesion Specimens

Alison M. Benton, MS, SMB(ASCP)CM
David C. Gaston, M.D., Ph.D.

Molecular Infectious Diseases Laboratory (MIDL)
Vanderbilt University Medical Center (VUMC)

APHL Lab Con
March 15, 2023
Disclosures (DCG)

- Research funding / Reagents
 - Illumina, Inc.
 - IDbyDNA, Inc.
- Honoraria
 - American Association of Clinical Chemistry
- Consulting
 - BioMerieux, Inc.
Objectives and Overview

• Objectives
 – Understand an academic laboratory approach to a public health threat
 – Appreciate the key partnerships between public health and academic microbiology laboratories
 – Utilize lessons from Mpox to determine best-approach responses to the next global infectious event

• Overview
 – Director perspective
 – Lead technologist perspective
Pox and the Bard of Avon

A pox damn you, you muddy rascal, is that all the comfort you give me?

Henry IV

A pox o’ your throat, you bawling, blasphemous, incharitable dog!

The Tempest

John Taylor; National Portrait Gallery, London, UK
Mpxo: Evidence that I cannot predict the future

July 1: Begin as faculty at VUMC
August 31: Testing go-live at VUMC

2022
- May 7: UK
- May 17-31: Massachusetts → NYC → Multiple
- July 6: Tennessee
- July 23: WHO declares Emergency of International Concern
- August 9: HHS declares Public Health Emergency
- September 7: FDA releases EUA

2023
- January 31: end of Public Health Emergency

2022 U.S. Map and Case Count

U.S. Cases
- Total Cases: 30,225

U.S. Deaths
- Total Deaths: 38

TN: 396

Case Range
- 1 to 10
- 11 to 50
- 51 to 100
- 101 to 500
- >500

https://www.cdc.gov/poxvirus/monkeypox/response/2022/us-map.html Updated 3/8/22
Key Issues at the Beginning ...

- Bring testing in-house, or send it out?
- How to best communicate complex ordering requirements?
Key Issues at the Beginning ...

- How do we ensure safety?
 - Patients and Clinical Staff
 - Laboratory staff
Key Validation Questions

- Select agent?
- Specimen sources?
- Swab types?
- Transport media?
- Inactivation?
- Turn-around time?
- Acceptable limit of detection?
- Biohazard waste?
- EUA?
- Validation materials?
- Reporting?
- Reimbursement?
- Reagent availability?

What approach will best serve our patients?
FDA-IVD Approved, CDC Developed Assay

Test Procedure: Monkeypox virus Generic Real-Time PCR Test

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Issued Date</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>6/6/2022</td>
<td>1 of 7</td>
</tr>
</tbody>
</table>

Target: MPXV Extracellular enveloped virus protein gene B6R

Test Procedure: Non-variola Orthopoxvirus Generic Real-Time PCR Test

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Issued Date</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>6/6/2022</td>
<td>1 of 8</td>
</tr>
</tbody>
</table>

Target: Orthopoxvirus DNA polymerase gene E9L

Considerations for an LDT: Speed, Reliability, Safety

- **Platform Selection** – bioMerieux EMAG, QuantStudio7

- **Assay Selection** – RealStar Zoonotic Orthopoxvirus PCR Kit (Altona Diagnostics)
 - Developed in collaboration with CDC (2006)
 - Available as RUO
 - Scalable
 - Includes:
 - Positive PCR control (cowpox virus)
 - Internal extraction/PCR control
 - Target: Non-Variola Orthopoxvirus

- **Safety Measures** –
 Virus inactivation steps
Validation Material Selection

- **Positive Qualitative Material**: Vaccinia Virus (ATCC)

- **Positive Quantitative Material**
 - University of Indiana Clinical Microbiology colleagues
 - Culture clinical Mpox specimens
 - Harvest, Extract, Quantitate DNA
 - 3 individual viral preparations
 - Confirmed non-infectious

- **Negative Matrix**: Residual patient samples: lesions tested for HSV and VZV prior to Mpox emergence
Validation Plan

- **Accuracy:** 37 positive contrived vaccinia virus (ATCC), 1 Mpox positive co-tested at TDH, 30 negative (100%)
- **Repro/Precision:** 7 operators, 10 days, multiple reagent lots (96%)

- **LoD:**
 - Quantitated Mpox (3) extracted and assayed in serial dilution
 - 1×10^3 genomic copies/mL
 - Ct 37-39

- **Analysis:**
 - Ct cutoff for positivity 40.0
 - All results reviewed for clinical correlation if Ct > 37, per CDC Guidelines
Validation Plan

- **Specificity:** HSV-1, HSV-2, and VZV - no cross-reactivity

- **Inhibitory Substances:** Vaccinia Virus (high and low titer)
 - Blood, Urine, Feces, Antibiotic Ointment, Hydrocortisone
 - Feces and 10% blood showed inhibition (target and internal control)

- **Stability:** Mpox near LoD, stable over 72 hours, 4 degrees and RT
Workflow

- Inactivation
- Extraction
- Manual Assay Setup
- Manual Data Analysis
- Real-Time PCR
Safety and Stewardship

• **Safety**
 – TDH/CDC coordinated vaccination of all testing personnel
 – Senior, experienced MLS chosen
 – Dedicated lab space for virus inactivation
 – HSV and VZV lesion co-testing testing sequestered

• **Ordering restrictions**
 – Initial testing sent to TDH was coordinated through infection control
 – LDT had no ordering restrictions, stewardship managed through individual physicians

• **Public Health:** Infection Control and laboratory coordinated sending positive results to TDH
Monkeypox Virus Detection at VUMC

Total number of patients tested: 114
Mpox diagnosis: 30

Overall 26.3% positivity

Date range: 9/1/22 – 3/8/22
Monkeypox Virus Detection at VUMC

Total number of patients tested: 114
Mpox diagnosis: 30

Overall 26.3% positivity

Date range: 9/1/22 – 3/8/22
Monkeypox Virus Detection at VUMC

First run: 9/1/2022
Positive oral lesion
CT 18.2

Average: 26.6 ± 7.2
Date range: 9/1/22 – 3/8/23

39.2 - Max
32.5 - 75%
25.6 - Med
19.8 - 25%
16.8 - Min

CT value
Retrospective Review

- Was Mpox present in Tennessee prior to declared public health emergency in central TN?
- 101 residual lesion specimens (pools) submitted for HSV-1/2 and/or VZV testing
- One pool was positive – separate specimen from a patient in this pool was confirmed to contain Mpox by the TDH
- Detection of Mpox in this specimen is consistent with the known timing of Mpox arrival in central Tennessee.
- This specimen was handled for other testing – unintentional workplace Mpox exposure?
- Precautions are necessary to protect laboratory professionals
 - Sequester co-testing samples
 - Dedicated team for HSV and VZV lesion testing
 - Class II Biosafety hood requirement
Lessons Learned, and Preparing for the next Infectious Event ...
FDA Mpox Virus Emergency Use Authorization (EUA)

Contains Nonbinding Recommendations

Policy for Monkeypox Tests To Address the Public Health Emergency

Guidance for Laboratories, Commercial Manufacturers, and Food and Drug Administration Staff

For questions about this document, contact MPX Dx@fda.hhs.gov.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Devices and Radiological Health

Mpox Virus Whole Genome Sequencing (WGS)

VUMC PMI

MIDL

MPXV

microVU

VANTAGE: VANDERBILT TECHNOLOGIES FOR ADVANCED GENOMICS

microVU is now part of the Center for Personalized Microbiology
“We have a momentous opportunity before us now at the U.S. Centers for Disease Control and Prevention (CDC). The CDC has significantly increased its Advanced Molecular Detection (AMD) program, a result of an unprecedented funding of over $1.75 billion. I applaud such visionary efforts and think the program will be executed effectively by ramping up the sequencing of SARS-CoV-2 variants and other pathogens through the power of “next-generation sequencing.” These new genetic technologies can rapidly identify novel viral strains, providing invaluable information for research, surveillance, and patient treatment.

However, if advanced programs such as AMD in the U.S. and programs in other “developed” countries remain national boutiques, they will not achieve the tremendous potential they can under global governance by experienced leaders. We do not know where variants will emerge, but we should know the dangers of searching only under lamp posts while ignoring the real dangers in the dark.

To monitor the microbial world, we need to look far beyond an incomplete circle of well-lit national sampling programs and limited international partnerships. What we need in place to continue fighting this pandemic and to be better prepared for the next is a global network of pathogen sequencing surveillance and diagnostic infrastructure.”

What comes next?

THE MIDL WILL BE READY!!!

Number of cases
- 50
- 100
- 250
- 500
- 1,000
- 2,000
- 3,000
- 4,000
- 5,000

[Map of North and South America showing distribution of cases, with a color scale indicating numbers of cases ranging from 50 to 5,000.]
Not Mpox ...

Dragon Pox

Allment Information

- **Provoked by**: Interaction with *Peruvian Vipertooths*[^1]
- **Symptoms**:
 - Green-and-purple rash or lasting greenish tinge to skin[^2][^3]
 - Sparks from nostrils with sneezing[^4]
- **Treatment(s)**: *Dragon Pox cure*[^5][^6]

[^1]: https://harrypotter.fandom.com/wiki/Dragon_Pox
[^3]: VOTE FOR YOUR FAVORITE POX!!

[^1]: Alligator pox
[^2]: Camelpox
[^3]: Canarypox
[^4]: Cowpox
[^5]: Crowpox
[^6]: Dragonpox
[^7]: Fowlpox
[^8]: Gerbilpox
[^9]: Goatpox
[^10]: Horsepox
[^11]: Juncopox
[^12]: Monkeypox
[^13]: Mousepox
[^14]: Mynahpox
[^15]: Peacockpox
[^16]: Penguinpox
[^17]: Pigeonpox
[^18]: Psittacinepox
[^19]: Quailpox
[^20]: Raccoonpox
[^21]: Sealpox
[^22]: Sheeppox
[^23]: Skunkpox
[^24]: Sparrowpox
[^25]: Starlingpox
[^26]: Swinepox
[^27]: Turkeypox
[^28]: Volepox
[^29]: Armadillopox
Acknowledgements

MIDL ... Everyone!
Alison Benton
Matt Rogers
Steven Lawson
Sue Sefers

Romney Humphries, PhD
Adam Seegmiller, MD PhD
Alice Coogan, MD

David Vincent
Pat Purcell
Judy Davis
Emily Bishop
Laboratory Quality, Safety, and Operations Teams

Kara Levinson, PhD, and the TDH team
Ryan Relich, PhD, Bob Lei, PhD, and the Indiana University team
Jonathan Schmitz, MD PhD
Suman Das, PhD
Tom Peters
Vicki Laughman
VPLS Team
Tom Talbot, MD
Mary DeVault
Infection Prevention Team
Lori Rolando, MD
Occupational Health Team
References

Mpxo Virus Basic Virology

- Two strains/clades, Historic regions of endemicity
 - Clade I: ~10.6% mortality
 - Tier 1 select agent
 - DRC, South Sudan
 - Clade II: ~3.6% mortality
 - Current outbreak is lineage B.1
 - Nigeria and surrounding countries

- Zoonotic pathogen
 - Unknown animal reservoir; rodents suspected

- Transmission
 - Direct contact with infected carriers
 - Transmission in historic endemic range
 - 2003 US outbreak – prairie dogs
 - Skin-to-skin contact
 - Aerosolization of large droplets
 - Fomites?

Lum FM. Nat Rev Immunol. 2022 Sep 5. PMID: 36064780
Safety: Treatment and Vaccination

Treatment
- Tecovirimat (Tpoxx), oral or IV; only available from CDC
 - Targets Orthopoxvirus VP37 envelope wrapping protein
- Cidofovir, IV
 - Targets viral DNA polymerase
- Vaccinia immune globulin, IV

Vaccination
- Pre-Exposure vs Post-Exposure
 - Vaccine equity / availability
- Vaccinia (Ankara) derived vaccines
 - ACAM2000 – replication competent
 - JYNNEOS – replication incompetent
- Dosing based on prior vaccination
- Waning immunity
- Serology is not widely available
Pending Challenges with Detection

Audience: Clinical Laboratories
Level: Laboratory Alert

CDC is aware of three *Monkeypox virus* (MPXV) cases in California in which preliminary data show a significant deletion in the tumor necrosis factor (TNF) receptor gene. This gene is the target for the CDC West African MPXV and Generic MPXV real-time PCR tests. At this point, the TNF receptor gene deletion is rare. Molecular laboratory developed tests (LDTs) designed using the CDC published primers and probes that specifically target *Monkeypox virus* did **NOT** detect the virus because of the TNF receptor gene deletion in these specimens. These cases were still correctly diagnosed because they were also tested with an LDT that was developed based on CDC’s published non-variola *Orthopoxvirus* (NVO) test.

To prevent false negative results:

- If your laboratory is using a MPXV-specific LDT, refer highly suspicious *Monkeypox virus* specimens that result as negative to your public health laboratory, or to CDC, to confirm results. Public health laboratories and select commercial laboratories use the CDC FDA cleared NVO test, which can correctly identify *Orthopoxvirus* when the TNF gene deletion occurs.
- Use a multiplex assay that targets multiple viral genes, or an assay that targets an essential viral gene which is unlikely to mutate, or an assay that detects non-variola *Orthopoxvirus*.

CDC will update the published primer and probe sequence information to alert test developers of this TNF receptor gene deletion.
Monkeypox Virus Basic Virology

- Large and complex virus
 - Double-stranded DNA virus; Genome ~200kb
 - Dumbbell-shaped core
 - Complex series of membranes composing envelope
Lesions

<table>
<thead>
<tr>
<th>Stage</th>
<th>Stage Duration</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enanthem</td>
<td></td>
<td>• Sometimes, lesions first form on the tongue and in the mouth.</td>
</tr>
<tr>
<td>Macules</td>
<td>1–2 days</td>
<td>• Macular lesions appear.</td>
</tr>
<tr>
<td>Papules</td>
<td>1–2 days</td>
<td>• Lesions typically progress from macular (flat) to papular (raised).</td>
</tr>
<tr>
<td>Vesicles</td>
<td>1–2 days</td>
<td>• Lesions then typically become vesicular (raised and filled with clear fluid).</td>
</tr>
</tbody>
</table>
| Pustules| 5–7 days | • Lesions then typically become pustular (filled with opaque fluid) – sharply raised, usually round, and firm to the touch (deep seated).
 • Finally, lesions typically develop a depression in the center (umbilication).
 • The pustules will remain for approximately 5 to 7 days before beginning to crust. |
| Scabs | 7–14 days | • By the end of the second week, pustules have crusted and scabbed over.
 • Scabs will remain for about a week before beginning to fall off. |

https://www.cdc.gov/poxvirus/monkeypox/clinicians/clinical-recognition.html
CT values and Viral Titers Correlate Well

Correlation between quantity of viral DNA and infectious virus titre in clinical specimens of MPXV infected patients, Israel, 2022 (n = 43 specimens)

A. All samples

B. Dermal lesion samples

C. Oropharyngeal samples

- **Cq**: quantitation cycle; **LOD**: limit of detection (25 pfu/mL); **MPXV**: monkeypox virus; **pfu**: plaque forming units.

<table>
<thead>
<tr>
<th>LODa</th>
<th>LODb</th>
<th>LODc</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>12.5</td>
<td>12.5</td>
</tr>
</tbody>
</table>

40-thirty clinical samples (21 oropharyngeal swabs, 20 dermal lesion exudate swabs and two rectal swabs) from 32 patients were each subjected to MPXV-DNA quantification by real-time PCR and infectious-viral-titre determination by plaque assay. PCR results (Cq values), and corresponding infectious virus titres (pfu/mL) are plotted, with samples having a titre below LOD being assigned a value of half the LOD (12.5 pfu/mL). Plots for (A) all samples, (B) dermal lesion exudate samples only, and (C) oropharyngeal samples only are respectively presented with the Pearson correlation coefficient obtained.

Paran N. Euro Surveill. 2022 Sep;27(35). PMID: 36052723
Fig. 1. Viral DNA-load time courses were plotted for hospitalized patients with available serial measurements. A) Swabs from cutaneous lesions were taken according to established procedures; however, the exact location where swabs were taken has not been recorded. Also, swabbing procedures may entail opening a fresh lesion, which will then crust over. The indicated viral loads represent generic lesion swabs from the respective patient, not necessarily from the same lesion. (1st week: median 3.31E+07 cp/ml, range 2.19E+07 – 3.95E+07 cp/ml; 2nd week: median 3.04E+06 cp/ml, range 2.11E+05 – 5.48E+05 cp/ml). Graphs B) and C) represent oropharyngeal swabs (1st week: median 8.44E+04 cp/ml, range 6.93E+04 – 7.31E+05 cp/ml; 2nd week: median 4.04E+03 cp/ml, range 0 – 6.75E+06 cp/ml; 3rd week: median 0 cp/ml, range 0 – 2.00E+04 cp/ml) and EDTA plasma-samples (1st week: median 5.85E+02 cp/ml, range 1.58E+02 – 1.05E+03 cp/ml; 2nd week: median 7.80E+00 cp/ml, range 0 – 1.20E+03 cp/ml; 3rd week: single sample, 2.37E+01 cp/ml) respectively.
Lesions Contain the Most Viral DNA

Fig. 2. A) Viral DNA-loads of different specimen types are plotted for patient 1. gray area represents their stay in the hospital. Red asterisk (*) represents a sample with successful isolation of infections virus, whereas black asterisk (*) represent unsuccessful attempts at viral culture. B) The evolution of an exemplary pustula is displayed over the same timeframe.