 Advances in molecular diagnosis of GUD and rectal LGV

Allan Pillay, PhD
Lead, Molecular Surveillance of T. pallidum Unit
Laboratory Reference & Research Branch
Division of STD Prevention
Centers for Disease Control and Prevention
Overview

- Background – GUD, including LGV
- Challenges with syphilis diagnosis
- Molecular tests for syphilis
- Evaluation of CDC Real-Time M-PCR for GUD
- Molecular tests for LGV & prevalence data
- Summary
Reported cases of bacterial STDs in US - 2017

- **Syphilis**
 - 30,644 cases of P&S syphilis - 76% increase since 2013
 - Congenital syphilis - 918 cases; 154% increase since 2013
 - Ocular syphilis – Cluster of 12 cases in Seattle & San Francisco in Dec 2014 – Mar 2015; cases reported in multiple states

- **Chancroid**
 - 7 cases in 5 states
 - *H. ducreyi* not detected in reference specimens sent to CDC in the past decade

- **Lymphogranuloma venereum (LGV)**
 - National prevalence is unknown because LGV-specific Dx tests are not widely available and cases are not differentiated from Chlamydia reporting

STD surveillance, CDC 2017
Herpes simplex virus (HSV) - 2008 data

- **Herpes simplex virus**
 - HSV-2 – 776,000 new infections
 - HSV-1 infections are typically orolabial but appears to be increasing among young adults in the US
Trend of proportion of genital ulcers caused by infections with *H. ducreyi*, 1979–2010
Cutaneous *H. ducreyi*

<table>
<thead>
<tr>
<th>Country</th>
<th>Prevalence by PCR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghana</td>
<td>27.4</td>
</tr>
<tr>
<td>Solomon Islands</td>
<td>32</td>
</tr>
<tr>
<td>Vanuatu</td>
<td>38.6</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>60</td>
</tr>
</tbody>
</table>

- 2 isolates resistant to penicillin (Ghana & PNG)
- *Tet(B)* and *catS* resistance determinants in Ghana strains
- CS strains have all virulence genes
Haemophilus ducreyi genital & cutaneous lesions
Syphilis – US Rates of Reported Cases by Stage of Infection, 1941–2017

STD surveillance, CDC 2017
Primary and Secondary Syphilis — Rates of Reported Cases by Sex and Male-to-Female Rate Ratios, US, 1990–2017
Primary and Secondary Syphilis
Reported Cases by Sex and Sexual Behavior from 37 States, 2013–2017

STD surveillance, CDC 2017
Challenges with syphilis diagnostics

- No FDA-cleared NAAT test
- Combination of tests are required to diagnose infection (NAATs, treponemal, non-treponemal tests)
- Nontreponemal and treponemal serological tests are insensitive in early primary syphilis and may be nonreactive in up to 47% of patients
- *T. pallidum* cannot be grown on routine lab media
- Primary lesions are painless and may go unnoticed in women and MSM
- Treponemal tests usually remain positive for life after successful treatment vs nontreponemal titers (decline slowly or remain serofast) - difficult to distinguish between treated and new infections in high-risk individuals
Challenges with syphilis diagnostics

- Darkfield microscopy (DFM) is the only routinely available direct detection test for moist lesions of primary & secondary syphilis
 - DFM is on the decline in STD clinics
 - Test relies on an adequately trained microscopist - testing proficiency needs to be maintained
 - Test must be done while treponemes are still motile (within 20 min. of collection)
 - Sensitivity of DFM is about 88% compared to PCR
Sensitivity and Specificity of syphilis PCR

- **Sensitivity***
 - lesion exudate of primary syphilis: 72% to 95%
 - secondary lesions swabs: 20% to 86%
 - lesion biopsies of secondary syphilis: 26% to 75%**
 - CSF from neurosyphilis patients: 50% to 77%
 - whole blood or its components (serum/plasma): 12% to 55% (1o), 15% to 47% (2o), 0% to 62% (latent syphilis)
 - amniotic fluid: 75% to 100%
 - neonatal CSF: 60% to 75%
 - neonatal whole blood or serum: 67% to 94%

- **Specificity***: 98%-100%
 - lesion exudate of primary and secondary syphilis; lesion biopsy of secondary syphilis; CSF from neurosyphilis cases; whole blood, serum, and plasma from primary, secondary, and latent

*based on a number of published studies

**fresh frozen tissue

Theel E; APHL/CDC syphilis consult 2017
Molecular tests for syphilis and Genital Ulcer Disease

- Quest Diagnostics offers an LDT PCR as a CLIA regulated test for use on CSF, blood, serum, and lesion swabs
- Medical Diagnostics Laboratories, LLC: GUD Panel (HSV-1 & HSV-2, H. ducreyi, T. pallidum) - OneSwab, ThinPrep - CLIA test
- GUD multiplex PCR (T. pallidum, HSV 1 & 2, H. ducreyi) available at CDC for reference testing—test code: CDC-10174 - CLIA test
- Hologic TMA Assay for T. pallidum - RUO
- ? LDTs in use at PHLs
- A number of FDA-cleared tests for HSV 1&2 are available
CE Mark tests – GUD

Seegene - Allplex Genital Ulcer Assay

- **7 pathogens:**
 - HSV-1 & 2
 - H. ducreyi
 - T. pallidum
 - Lymphogranuloma venereum (LGV)
 - Cytomegalovirus (CMV)
 - Varicella-zoster virus (VZV)

- **Specimens:** Genital swab, urine, liquid-based cytology specimen

- **Instrument:** Biorad CFX96 Real-time PCR System

SpeeDx - PlexPCR® VHS

- **4 pathogens:**
 - HSV-1 & 2 specific
 - T. pallidum
 - Varicella-zoster virus (VZV)

- **Specimens:** Genital & non-genital swabs

- **Instrument:** Roche LightCycler 480 Instrument & Cobas z 480 analyzer
Evaluation of CDC Real-Time GUD M-PCR at PHLs (CLIA regulated test)

- Collaboration between APHL and the Laboratory Reference & Research Branch (LRRB) within DSTDP, CDC

- Sites: 4 PHLs participated in the evaluation - Dallas County HHS Lab; City of Milwaukee Health Department Lab; Maryland DOH Lab; Michigan DHHS, Bureau of Labs

- Specimens: residual swab specimens collected for HSV testing

- Aliquot of specimens sent to LRRB for PCR testing; results will be compared to participating labs

- Testing is ongoing at CDC and 3 of the 4 sites
Real-Time M-PCR for GUD Diagnosis - AB7500 and QS

- CDC GUD M-PCR has been validated on the RotorGene-Q instrument
- Assay modified for use on Applied Biosystems 7500 Fast Dx and QuantStudio Dx
- Dyes used for detection of GUD organisms
 - Channel 1: FAM-QSY, HSV-1/-2 (Glycoprotein D)
 - Channel 2: VIC-QSY, H. ducreyi (Hemolysin, hhdA)
 - Channel 3: ABY-QSY, T. pallidum (47 Kd lipoprotein)
 - Channel 4: JUN-QSY, Human DNA control (RNase P)
Real-time M-PCR for GUD

- **T. pallidum pos - ROX**
- **HSV pos - FAM**
- **T. pallidum pos control**
- **Human DNA Control, RNP – Cy5**

HEX dye for HD
Lymphogranuloma venereum - LGV

- Infection with L1, L2, or L3 serovars of *C. trachomatis* may result in a disease characterized by hemorrhagic proctitis, genital lesions, tender inguinal and/or femoral lymphadenopathy

- Outbreak of LGV proctocolitis among HIV+ MSM caused by the L2 genotype was reported in Western Europe in 2003

- Sporadic cases or clusters of inguinal and anorectal LGV have been reported in the US but national surveillance data is lacking

- Accurate diagnosis is important because an extended period of treatment vs non–LGV CT is required - current recommendation is 21 vs 7 days of doxycycline (100 mg orally twice a day) or erythromycin (500 mg orally four times a day)
Molecular tests for LGV

- FDA-cleared NAATs for CT detection in rectal & pharyngeal specimens - Aptima Combo 2 Assay CT/NG; Xpert CT/NG
- Commercial NAATs for CT cannot differentiate LGV from non-LGV infection
- Commercial labs offering LGV testing:
 - BioReference Laboratories: LGV PCR, ThinPrep Vial
 - Medical Diagnostics Laboratories, LLC: LGV Real-Time PCR, OneSwab, UroSwab, ThinPrep
 - ARUP Laboratories: LGV PCR, Vaginal, rectal, cervical, urethral, genital, or penile swab with APTIMA Unisex Swab Specimen Collection kit; VTM, urine
- CLIA regulated testing using LDTs is available at a few PHLs
Molecular tests for LGV

- CE Mark tests: Seegene - Allplex Genital Ulcer Assay
- LGV PCR available at CDC for research or epidemiological purposes – test code: CDC-10523 (non-CLIA test)
LGV Real-Time Quadriplex PCR – CDC Lab

Channel 1 (FAM): TaqMan Probe 1 (Non-LGV)
Channel 2 (VIC): TaqMan MGB Probe (LGV)
Channel 3 (ROX): Cryptic plasmid (+CT Control)
Channel 4 (Cy5): RNase P (Human DNA Control)

Chen et al. STI 2008
LGV Real-Time Quadriplex PCR

<table>
<thead>
<tr>
<th>LGV</th>
<th>FAM</th>
<th>VIC</th>
<th>ROX</th>
<th>CY5</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGV</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Non-LGV</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mixed</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Negative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
CDC LGV assay – outbreak investigation

- Michigan
 - Cluster of suspect cases identified among MSM in 2015
 - Specimens from patients with signs or symptoms compatible with LGV (proctocolitis, inguinal/femoral lymphadenopathy, or genital or rectal ulcers) with other causes of LGV-like symptoms ruled out & and positive culture or NAAT
 - 21/38 (55%) cases confirmed as LGV by real-time quadriplex PCR
 - 19 rectal- & 2 penile lesion swabs
 - L2b genotype determined by sequencing VD2 of \textit{ompA}

- Chicago
 - Cluster of suspect cases identified among MSM in 2016
 - Specimens – same criteria as Michigan
 - 19/47 (40%) cases confirmed as LGV by real-time quadriplex PCR
 - L2b genotype identified

\text{de Voux et al. MMWR 2016}
Molecular surveillance of LGV: 7 sites across the US

Aim: Estimate the prevalence of LGV among CT-positive rectal specimens using real-time PCR and to determine the genotypes of CT strains

Methods
- 172 rectal swabs from men and women – CT-pos by Hologic APTIMA CT/NG NAAT between Sept 2015 - Feb 2017
- Participating PHLs in 7 states - Alabama, Indiana, Massachusetts, Nevada, New Jersey, Michigan, and Tennessee
- Two real-time duplex PCRs used: 1st detects CT, 2nd differentiates LGV and non-LGV
- Genotyping was performed by nested PCR and sequencing of the outer membrane protein A gene (ompA)
Results

- 132 (76.7%) of the 172 specimens were positive for CT by real-time PCR
- **13.6% (18)** of 132 were positive for LGV and 86.4% (114) were non-LGV
- Of the remaining 40, 21.5% (37) tested negative for CT by real-time PCR and 1.7% (3) were invalid - due to PCR inhibition or no human DNA detected
- All 14 specimens from women – negative for LGV
- L2 genotype was identified in all specimens
- Serovars D, E, G, and J accounted for ~95% of non-LGV CT

- Overall 8.7% LGV+ (114/1317) over 3.5 years (2008 – mid-2011) - CT-pos samples (12.3% CT-pos) reflexed to LGV testing
- Overall 16.6% LGV+ (398/2396) between 2012-2015 - batched random sampling

Pathela et al. 2019, STD
Summary

- FDA-cleared NAAT is needed for patients presenting with moist lesions of primary & secondary syphilis
- PCR testing for *syphilis* & *LGV* is being done at a few commercial labs under CLIA regulations
- LDTs for *LGV* are being used in some PHLs
- Two FDA-cleared CT/NG tests are now available for use on rectal & pharyngeal specimens
Acknowledgements

GUD MPCR sites

Dallas
Joey Stringer
Chukwuemika Aroh
Edward Bannister
Christopher Perkins
Lynne Davis
Aurelia Schmalstieg

Michigan
Marty Soehnlen
Diana Riner
Laura Mosher
Bruce Robeson

Maryland
Heather Peters
Robert Myers
Jenny Chen
Keith Perkins

Milwaukee
Sanjib Bhattacharyya
Trivikram Dasu
Krystal Keuler
Jordan Hillesheim
Manjeet Khubbar

CDC
Cheng Chen
Brunie White
Ellen Kersh
Munegowda Koralur
Kevin Pettus
Kai-Hua Chi
Lilia Ganova-Raeva

APHL
Anne Gaynor
Nicholas Ancona

LGV study sites

Traci Dailey, AL
Arthur Kazianis, MA
Barbara Weberman, MI
JoAnn Kramer, NJ
Holly Hansen, NV
Henrietta Hardin, TN