Newborn screening for spinal muscular atrophy

Kristina Mercer, MPH, PhD

ORISE Fellow
Newborn Screening Translational Research Initiative
Newborn Screening and Molecular Biology Branch

APHL Newborn Screening Symposium
New Orleans, LA, September 13, 2017
Clinical Features of Spinal Muscular Atrophy (SMA)

- A neuromuscular disease resulting in the progressive degeneration of motor neurons
- Symptoms include loss of normal motor function and respiratory failure; can result in death
- 3 clinical types based on age of onset and severity
 - Type I: Birth – 6 mos.
 - Type II: 6 mos. – 2 years
 - Type III: 18 mos. – 3+ years
SMA is the leading genetic cause of death among infants

- The birth prevalence of SMA is approx. 1 in 10,000
- Type I (infantile-onset) is the most common form
- The majority of children with Type I SMA do not survive beyond 2 years without effective therapy
- FDA approved therapy exists
- SMA has been nominated for inclusion on the Recommended Uniform Screening Panel (RUSP)
Genetic characterization of SMA

- Autosomal recessive inheritance
- Approximately 96% of SMA cases are caused by mutations in the \textit{SMN1} gene
 - \textit{SMN1} encodes for survival of motor neuron (SMN) protein
- Among the \textit{SMN1} mutations, most involve the loss of \textit{SMN1} exon 7 (on both chromosomes) by deletion or gene conversion
 - Loss of this gene region results in a non-functional SMN protein
 - \textit{SMN2}, a paralog of \textit{SMN1}, may moderate the disease severity
 - \textit{SMN2} can only produce 10% of the SMN protein produced by \textit{SMN1}

Several different molecular assays have been used to detect SMA

- Restriction Fragment Length Polymorphism (RFLP) test
- High Resolution Melting (HRM) analysis
- Multiplex Ligation-Dependent Probe Amplification (MLPA)
- Luminex Genotyping
- DNA sequencing
- Quantitative (qPCR)/ Real-time PCR (RT-PCR)
Real-time PCR is one method that can be used to screen newborns for SMA

- Real-time PCR allows for high throughput screening
- Most state newborn screening labs are already using this method
 - Labs are equipped with the necessary instrumentation
 - Staff is familiar with procedure
- Reactions can be multiplexed
 - Reduced cost to include a new assay
 - May not require added labor cost to run
What are some challenges associated with using real-time PCR to screen for SMA?
Challenge #1:

SMN1 has a paralog, the *SMN2* gene, which has nearly identical genomic sequence

- There are only 5 nucleotide differences between the two genes
- For real-time PCR, it is important to avoid detecting *SMN2* when trying to identify the loss of *SMN1*
LNA (locked nucleic acid) nucleotides can be used to distinguish single nucleotide differences between \(SMN1 \) and \(SMN2 \). This would allow for discriminatory amplification and/or signal detection of \(SMN1 \) only.

- LNAs can be incorporated into primers and probes to discern single nucleotide differences between \(SMN1 \) and \(SMN2 \).

Initial SMA assay developed at CDC

SMN1 (*SMN2*) **Intron 7 Sequence**

```
ttttgtaaaaacttttatgtttttgtggaaaaacaaatgttttttgacatttaaaaagttcagatgttaA(G)aaagttgaaaggttaatgtaaaaaacatcaatattaagaattttgtgccc
```

- The loss of SMN1 intron 7 was detected using a LNA probe (in green)
 - LNA substitutions underlined
- The LNA probe was designed to selectively bind SMN1 by discriminating between the mismatch nucleotides of SMN1 and SMN2
 - SMN1 nucleotide (A) and SMN2 nucleotide (G)
- Forward and reverse primers (in yellow) will amplify both SMN1 and SMN2 sequences

Challenge #2: Recombination between SMN1 and SMN2 can result in a hybrid genotype

SMN1

Exon 7 | Intron 7 | Exon 8

C A

SMN2

Exon 7 | Intron 7 | Exon 8

T G

False positive
8/120,000 (< 0.01%)*

False negative
Cases identified**; unknown prevalence

We modified the previous assay to target exon 7 and reduce the possibility of false positive or false negative results due to hybrid genotypes.

- The LNA probe was designed to selectively bind \(SMN1 \) by discriminating between the mismatch nucleotides of \(SMN1 \) (C) and \(SMN2 \) (T).
- Forward and reverse primers (in yellow) will amplify both \(SMN1 \) and \(SMN2 \) sequences.

Assay gives *non-specific* amplification *some of the time* when testing samples derived from SMA patients.

- The LNA probe designed to recognize *SMN1* only can bind the *SMN2* amplicon, producing non-specific signal in SMA patient samples.
We replaced the original, reverse primer with an \textit{SMN1}-specific LNA primer (in blue) to eliminate \textit{SMN2} amplification.
Assay specificity improves by adding LNA primer

Assay Revision
Part 1

Assay Revision
Part 2

SMA patient samples

Non-specific signal from *SMN2*

No signal from *SMN2*
Technical concern:

Assay did not perform as expected in all environments

- Possible reasons for reduced assay efficiency:
 - Sensitive to DNA extraction method
 - Sensitive to type of Taqman master mix
 - Sensitive to temperature fluctuations > 1 degree Celsius

- Further method improvement was needed
LNA probe was redesigned to make the assay more robust

- Factors important in the design of LNA probe for mismatch discrimination:
 - Length of the probe
 - short (10-12 nucleotides)
 - Location of mismatch in the probe
 - center position within probe
 - Modification pattern
 - LNA substitution in triplet at site of mismatch
 - Identity of the mismatch
 - pyrimidine (C or T) at mismatch site within probe (discrimination is poor for G-T mismatches)

The Current Assay utilizes an $SMN1$-specific LNA probe with forward strand sequence.

- We do not observe any non-specific signal in $SMN1$ null samples even when challenged with an excess of $SMN2$ sequence.
This assay can also be multiplexed with primers and probes for RNase P ($RPP30$) and TREC.

Cq values for RNase P and TREC are unaffected by the addition of reagents for SMA.
The Current SMA Assay works at a range of temperatures from 60-65 degrees Celsius

- Patient samples are SMA test positive (no SMN1 signal) at temperatures ranging from 60-65 degrees Celsius
- Don’t need to worry about variations in instrument temperature affecting the results
The Current SMA Assay works at a range of temperatures from 60-65 degrees Celsius

- There is no observed effect of temperature on the Cq values for RNase P and TREC
- May not need to change the temperature of current TREC assay
- SMN1 amplification is not negatively affected
SMA patients are correctly identified from dried blood spots when using the current assay

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Assay Results</th>
<th>Clinical Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cq - SMN1 Exon 7</td>
<td>SMN1 Result</td>
</tr>
<tr>
<td>1</td>
<td>24.69</td>
<td>Present</td>
</tr>
<tr>
<td>2</td>
<td>No Cq</td>
<td>Absent</td>
</tr>
<tr>
<td>3</td>
<td>26.43</td>
<td>Present</td>
</tr>
<tr>
<td>4</td>
<td>No Cq</td>
<td>Absent</td>
</tr>
<tr>
<td>5</td>
<td>No Cq</td>
<td>Absent</td>
</tr>
<tr>
<td>6</td>
<td>25.67</td>
<td>Present</td>
</tr>
<tr>
<td>7</td>
<td>No Cq</td>
<td>Absent</td>
</tr>
<tr>
<td>8</td>
<td>24.28</td>
<td>Present</td>
</tr>
<tr>
<td>9</td>
<td>24.23</td>
<td>Present</td>
</tr>
<tr>
<td>10</td>
<td>No Cq</td>
<td>Absent</td>
</tr>
<tr>
<td>11</td>
<td>24.15</td>
<td>Present</td>
</tr>
<tr>
<td>12</td>
<td>25.19</td>
<td>Present</td>
</tr>
<tr>
<td>13</td>
<td>25.21</td>
<td>Present</td>
</tr>
<tr>
<td>14</td>
<td>28.15</td>
<td>Present</td>
</tr>
<tr>
<td>15</td>
<td>No Cq</td>
<td>Absent</td>
</tr>
<tr>
<td>16</td>
<td>24.49</td>
<td>Present</td>
</tr>
<tr>
<td>17</td>
<td>24.78</td>
<td>Present</td>
</tr>
<tr>
<td>18</td>
<td>No Cq</td>
<td>Absent</td>
</tr>
<tr>
<td>19</td>
<td>26.31</td>
<td>Present</td>
</tr>
<tr>
<td>20</td>
<td>23.81</td>
<td>Present</td>
</tr>
<tr>
<td>21</td>
<td>22.99</td>
<td>Present</td>
</tr>
<tr>
<td>22</td>
<td>No Cq</td>
<td>Absent</td>
</tr>
<tr>
<td>23</td>
<td>No Cq</td>
<td>Absent</td>
</tr>
<tr>
<td>24</td>
<td>22.32</td>
<td>Present</td>
</tr>
<tr>
<td>25</td>
<td>No Cq</td>
<td>Absent</td>
</tr>
<tr>
<td>26</td>
<td>No Cq</td>
<td>Absent</td>
</tr>
<tr>
<td>27</td>
<td>23.35</td>
<td>Present</td>
</tr>
<tr>
<td>28</td>
<td>23.46</td>
<td>Present</td>
</tr>
</tbody>
</table>
Key Features of the Current SMA assay

Assay Design Elements

- Targets Exon 7 and not Intron 7
- Forward Strand LNA Probe provides robust specificity (no background signal from SMN2)

Assay Characteristics

- Multiplex capable: can be used with TREC assay by adding only a few extra reagents; lower cost
- Sensitive: identified 100% of SMA patients with loss of SMN1 exon 7
- Flexible: (1) can be used at temperatures ranging from 60°C - 65°C, (2) works using “in situ” method and with DNA extracted from dried blood spots
Additional Key Points

- Both the LNA primer and forward strand (FS) probe improve specificity in detecting loss of \textit{SMN1} at exon 7.
- Current Assay using FS probe is comparatively more robust and cost effective.
- Use of a PCR clamp to suppress \textit{SMN2} amplification has also been developed, which can add an additional layer of specificity in a second tier assay for samples that are inconclusive.
- Droplet digital PCR can be used to determine copy number of \textit{SMN1} and \textit{SMN2}.
CDC can provide consultation and technical support to labs interested in screening for SMA

- **Pre assay development consultation**
 - Providing sequence for SMA assay primers and probe
 - Integrating SMA into current TREC assay

- **Reference materials for assay development and validation**

- **Individual training at CDC**
 - Performing real-time PCR assay
 - Preparation of QC materials
Acknowledgments

- **CDC scientists:**
 - Francis Lee
 - Golriz Yazdanpanah
 - Sophia Winchester
 - Robert Vogt
 - Han Phan
 - Carla Cuthbert

- **Taiwan Collaborators:**
 - Yin-Hsiu Chien
 - Shu-Chuan Chiang
 - Wuh-Liang Hwu

- **State lab collaborators:**
 - Minnesota
 - Berta Warman, Carrie Wolf
 - New Jersey
 - Alyssa MacMillan
 - Wisconsin
 - Mei Baker, Sean Mochal
 - Massachusetts
 - Anne Comeau, Lan Ji
Thank you for your attention!

Use of trade names and commercial sources in this presentation is for identification only and does not imply endorsement by the Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, the Public Health Service, or the U.S. Department of Health and Human Services.

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333
Telephone: 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348
Visit: www.cdc.gov | Contact CDC at: 1-800-CDC-INFO or www.cdc.gov/info

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.