Second tier tests and newborn screening

Marzia Pasquali, PhD, FACMG

Professor of Pathology, University of Utah School of Medicine

Medical Director, Biochemical Genetics and Newborn Screening, ARUP Laboratories

Atlanta, 5 February 2015
Outline

- Utah Newborn Screening Program
- ARUP Newborn screening laboratory
- Second tier tests algorithms/workflow
The efficiency and effectiveness of a newborn screening program is dependent upon the smooth integration of sample collection, laboratory testing, follow-up, diagnosis, timely treatment, and tracking of outcomes.
Biochemical Genetics and Newborn Screening Laboratories at ARUP

- Technical oversight
- Scientific oversight

Technical Supervisor

- BCG 17 FTEs
- NBS 4 FTEs
- 13 LC-MS/MS
Second Tier Tests

- Tests run on the SAME sample used for the primary screen
- Different target analytes
- Often a different methodology is used
What is the purpose of second tier tests?

- Identify infants at risk of having a metabolic condition, while

- Reducing false positives (proportion of non-affected individuals who test positive), and

- Reducing false negatives (proportion of true affected individuals who test negative)
Impact of false positive results

- Anxiety
- Increased costs to parents
- Increased costs to society
- Decreased credibility for NBS program
- “Cry wolf” effect
- Potential for missing appropriate follow-up of a real patient
Impact of false negative results

• Missing a diagnosis of a potentially treatable metabolic condition, resulting in

• Morbidity and mortality associated with the condition
Second tier tests and newborn screening

• Biochemical/small molecule analysis based tests
 – LC-MS/MS

• Molecular testing
 – Cystic Fibrosis
 – Lysosomal storage diseases
 – DNA testing for metabolic disorders
Strategy for 2nd tier tests

• Presence of compounds that produce ions with the same mass/charge ratio: chromatographic separation
 – Antibiotics
 – Isomers/Isobars (allo-isoleucine, hydroxyproline, C10-OH-carnitine)
2nd tier test for elevated C5-carnitine

- Normal
- Pivaloylcarnitine
- 2-Methylbutyrylcarnitine
- Isovalerylcarnitine
- Isovaleric Acidemia
2nd tier test for elevated C5DC-carnitine

Glutaryl carnitine
- Normal: 0.02 umol/L
- MCAD deficiency: 0.04 umol/L
- Glutaric acidemia type I: 0.18 umol/L

C10OH-carnitines

Methylsuccinyl carnitine
- Kidney disease: 0.19 umol/L

SRM 388.3 > 85

Ketosis

Normal
Strategy for 2nd tier tests

• Specific markers for metabolic conditions:
 – Elevated C3-carnitine
 • Methylmalonic, methylcitric, 3-hydroxypropionic acids
 • Total homocysteine
 – Elevated methionine
 • Total homocysteine
 – Low methionine
 • Methylmalonic acid, total homocysteine
Specific markers for metabolic conditions:
- Elevated C3-carnitine
- Methylmalonic/methylcitric acid

2nd tier test for elevated C3-carnitine

- Methylcitric acid (Propionic acidemia)
- Succinic acid
- Methylymalonic acid (Methylymalonic acidemia)
2nd tier tests available

- Steroid profile for CAH
- Total homocysteine (elevated/low methionine)
- Glutaryl carnitine (elevated C5DC-carnitine)
- Methylmalonic/methylcitric acid (elevated C3)
- Allo-isoleucine (elevated Xle)
- Ethylmalonic acid (elevated C4-carnitine)
- Guanidinoacetate for GAMT deficiency
2nd tier tests

- Steroid profile for CAH (~150/month)
- Methylmalonic/methylcitric acid (~100/month)
- Glutaryl carnitine (~50/month)
- Total homocysteine (~30/month)
- Allo-isoleucine (~1/month)
- Ethylmalonic acid (~5/month)
- Guanidinoacetate for GAMT deficiency (?)
Choice of second-tier tests

- Identify the biggest “offender”
 - Positive predictive value for a specific marker
 (probability of being affected when the test is positive)

<table>
<thead>
<tr>
<th>Year</th>
<th>Marker(s)</th>
<th>Condition</th>
<th># of positives</th>
<th># of diagnosis</th>
<th>PPV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>Phe</td>
<td>PKU</td>
<td>11</td>
<td>10</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>PA, MMA</td>
<td>202</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Effectiveness of second-tier tests

<table>
<thead>
<tr>
<th>Year</th>
<th>Marker(s)</th>
<th>Condition</th>
<th># of positives</th>
<th># of diagnosis</th>
<th>PPV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Phe</td>
<td>PKU</td>
<td>7</td>
<td>6</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>PA, MMA</td>
<td>11</td>
<td>11</td>
<td>100</td>
</tr>
</tbody>
</table>
Algorithm for CAH

Elevated 17-OHP (after correction for Birth Weight)

2nd tier test
By LC-MS/MS

17-OHP > 12.5 ng/mL serum
(17-OHP+A)/C > 1

Confirmatory tests
Referral to Pediatric Endocrinologist

17-OHP < 12.5 ng/mL serum
(17-OHP+A)/C > 4

Has infant received corticosteroid prior to sample collection?

Yes:
Confirmatory tests
Referral to Pediatric Endocrinologist

No:
Normal

17-OHP < 12.5 ng/mL serum
(17-OHP+A)/C < 4

Normal
Algorithm for C3-carnitine

C3 > 4 umol/L
and
C3/C2 > 0.19 or C3/C16 > 1.9
C3 > 5 umol/L

2nd tier test for
MMA
MCA

MMA > 5 umol/L
MCA = Normal
Methylmalonic acidemia
Confirmatory tests
Referral to metabolic center

MMA = Normal
MCA > 5 umol/L
Propionic acidemia
Confirmatory tests
Referral to metabolic center

MMA = Normal
MCA = Normal
Normal
Algorithm for Methionine

Met>45 µmol/L or Met<8 µmol/L

2nd tier test for Total Homocysteine

- **60 µmol/L < Met < 100 µmol/L** and **tHcys < 8 µmol/L**
 - **Normal**

- **Met = normal or elevated** and **tHcys > 8 µmol/L**
 - **Homocystinuria** (Cystathionine ß-synthase def)
 - Confirmatory tests
 - Referral to metabolic center

- **Met < 10 µmol/L** and **tHcys > 8 µmol/L**
 - **Homocystinuria** (Remethylation defect)
 - Confirmatory tests
 - Referral to metabolic center

- **Met > 100 µmol/L**
 - **tHcys = normal or mildly elevated**
 - **MAT deficiency and others**
 - Confirmatory tests
 - Referral to metabolic center
Algorithm for X-Leu

X-Leu > 200 µmol/L and X-Leu/Ala > 1.75

2nd tier test for Allo-isoleucine

- Allo-isoleucine < 2 µmol/L: Normal
- Allo-isoleucine > 2 µmol/L: MSUD Confirmatory tests Referral to metabolic center
- Allo-isoleucine < 2 µmol/L Hydroxyproline > 100 µmol/L: Hydroxyprolinemia Confirmatory tests Referral to metabolic center
Newborn screening workflow

• Primary screen run and reported daily

• 2nd tier tests:
 – CAH run daily
 – MMA/MCA run 3+/week
 – Hcys run weekly
 – Allo-isoleucine run as needed
 – C5DC run as needed
Barriers to implementation of 2nd tier tests

• Availability of resources
 – Instruments
 – Personnel

• Cost effectiveness
 – Economy of scale
Regional approach to 2nd tier testing

- Evaluation and implementation of second tier testing for disorders identified by MS/MS in newborn blood spots in the Mountain States Region (CDC- grant 5U01EH000453-02)
 - Coordinate with the Mountain States (Region 6) the submission of samples (blood spots) to be analyzed with a second tier method.
 - Compare the number of positive results after the 2nd tier tests with the number of positive results obtained with the primary screen.
 - Evaluate the feasibility of a regional center for second tier tests.
Region 6: 2nd tier tests

- Steroid profile for CAH
- Methylmalonic/methylcitric acids for elevated C3-carnitine
- Total homocysteine for high methionine
- Allo-isoleucine for MSUD
- Succinylacetone for Tyrosinemia type I
Utah: 2nd tier tests

• Steroid profile for CAH
• Methylmalonic/methylcitric acids for elevated C3-carnitine
• Total homocysteine for high methionine
• Allo-isoleucine for MSUD
• C5DC for Glutaric acidemia type I
• Ethylmalonic acid for SCAD
Region 6 study: results

- Results: 9650 second tier tests
Region 6 study: results

• Proportion of tests run on babies weighing <2,000 g at birth:
 – Allo-isoleucine (Xle) 38%
 – Total homocysteine (Met) 37%
 – Succinylacetone (Tyr) 33%
 – CAH 17%
 – Methylmalonic/methylcitric 14%
 – Ethylmalonic 2%
Region 6 study: results

- Abnormal 2nd tier results by test
 - HCY 1 (0.1%)
 - MMA/MCA 8 (1%)
 - CAH 91 (3.1%)
 - SUAC 0
 - Allo-isoleucine 0
 - EMA 0
2nd tier for methylmalonic/methylcitric acid

N=888

2nd tier
- 8 confirmatory tests
 - 3 True Positives
 - PPV = 37.5%

traditional
- 130 confirmatory tests
 - 3 True Positives
 - PPV = 2.3%
2nd tier test for CAH (Utah)

- 4 years data
 - Number of infants screened = 271,784
 - Number of abnormal 2nd tier tests requiring confirmatory tests = 58
 - Number of true positives = 23
 - False positive rate = 0.013%
 - Positive Predictive Value = 39.7%
Summary

• Second tier tests are effective in reducing false positives.

• Implementation of second tier tests can also reduce the stress to the NBS program, families, medical homes caused by false positives.

• They can be integrated in the laboratory workflow provided adequate instrumentation and personnel resources are available.
Acknowledgments

• MSGRC (Region 6)
• Utah Department of Health
• BCG and NBS laboratory at ARUP
• University of Utah Metabolic Center