Model Proficiency Evaluation Survey and NSQAP PT Program on T Cell Receptor Excision Circle (TREC) Assay for SCID

Francis K. Lee, M.Sc, Ph.D.
Senior Service Fellow (Research Microbiologist)
Newborn Screening Translational Research Initiative
Newborn Screening and Molecular Biology Branch, CDC

NBS Molecular Biology Training Workshop
CDC, Atlanta, May 8-11, 2012
TREC Assay in Newborn Screening for SCID

- Laboratory-developed tests with limited standardization among labs
- Significant variations in major components of assay
TREC Quantitative PCR Assays

Basic qPCR
- DBS DNA Extraction
- TREC sequence Amplification
- Single-Point PCR
- Amplicon Quantification

A
- DBS DNA Extraction
- Real-time PCR

B
- DBS ‘On-Card’
 - One-wash
 - Real-time PCR

C
- DBS ‘On-Card’
 - No-wash
 - Single-Point PCR
 - Amplicon Quantification

Digital PCR
- DBS DNA Extraction
- Partitioning Sample Reaction Mixture
- TREC Sequence Amplification
- End-point PCR
- Enumeration of Partitions with + or — Reaction
Other Variations in TRECs Assay Protocols

- **DNA Quantity**
 - DNA Extract (from 3 mm punch)
 - Extraction Volume / Reaction Volume
 - DNA on DBS punch
 - 2mm punch / 1.5 mm punch
 - (No wash/Wash 1x or 2x)

- **Materials and Methods**
 - Primers & Probes
 - Singleplex
 - Multiplex
 - 96/384 well format

- **Calibrators**
 - Plasmids
 - Cell-based
Model Performance Evaluation Survey

- Started in February 2010 with three labs (WI, MA, CDC)
- 19 Laboratories currently participating
 - 10 PHL in routine population-based newborn screening for SCID
 - 9 labs in assay development or validation stages
TREC Model Performance Evaluation Survey Program (MPES)

Mission: To support state public health laboratories in

- Assay development and validation
- Accelerated proficiency testing
- Transition to NSQAP PT program
- Data harmonization
Supporting public health laboratories in

- Assay development and validation
 - Consultations on:
 - Physical laboratory layout and practices
 - TREC assay format selection
 - Instruments and reagents
 - Calibrators
 - Assay validation
 - Reference materials
CDC TREC Reference Materials

QC Materials

- SCID-like DBS: mononuclear cells—depleted blood (low/no TREC, normal reference gene level)
- “Unsat” DBS: leukocyte depleted blood (low/no TREC, low reference gene)
- Cord blood DBS: (TREC and reference genes in reference range)
 - High
 - Medium
 - Low
TREC Cq distribution in DBS from newborns with normal birth wt. (N=2000) by on-card real time PCR Assay
Special Reference Materials for TREC Assay evaluation

Serial Dilutions of Cord Blood

- Begin at above median level of expected range for TREC

- Diluted into MNC-depleted blood
 (diluent w No detectable TREC; normal level of reference genes)

- 100%, 50%, 25%, 12.5%, 6.2%, 3.1%

Potential use: Assay development; LOD/LOQ studies;
 Calibration comparison; ‘Cut-off’ placement
Model Performance Evaluation Survey
an accelerated pilot PT program

- Panel sent out at 4-6 week interval
- Five well-characterized DBS with prior consensus categorization for proficiency assessment
- Additional ‘non-scoring’ DBS included for technical or harmonization studies
- All samples blinded
- Reports submitted by participants within 3 weeks
MPES Report Form

<table>
<thead>
<tr>
<th>Lab # ___</th>
<th>TREC</th>
<th>Final Categorical Result</th>
<th>Reference Gene: ___</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cq Value</td>
<td>Copy Number</td>
<td>No F/U</td>
<td>F/U action required</td>
</tr>
<tr>
<td></td>
<td>per Rxn</td>
<td>per µL Bld</td>
<td>TREC NL</td>
<td>TREC ↓</td>
</tr>
<tr>
<td>Sample ID</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cutoff

If TREC↓ selected, indicate reference gene category
Sample Report from MPES Labs

Lab #300

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Cq Value</th>
<th>Copy Number</th>
<th>No F/U</th>
<th>F/U action required</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>35.1</td>
<td>5</td>
<td>5</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>29.7</td>
<td>132</td>
<td>132</td>
<td>✓ ✓</td>
<td>SCID-like</td>
</tr>
<tr>
<td>C</td>
<td>No Ct</td>
<td>0</td>
<td>0</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>31.5</td>
<td>46</td>
<td>46</td>
<td>✓ ✓</td>
<td>Normal</td>
</tr>
<tr>
<td>E</td>
<td>37.0</td>
<td>1</td>
<td>1</td>
<td>✓ ✓</td>
<td>SCID-like</td>
</tr>
<tr>
<td>F</td>
<td>29.3</td>
<td>180</td>
<td>180</td>
<td>✓ ✓</td>
<td>Normal</td>
</tr>
<tr>
<td>G</td>
<td>33.7</td>
<td>12</td>
<td>12</td>
<td>✓ ✓</td>
<td>SCID-like</td>
</tr>
</tbody>
</table>

Cutoff 25

If TREC↓ selected, indicate reference gene category 27.5 Cutoff

Lab #999

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Cq Value</th>
<th>Copy Number</th>
<th>No F/U</th>
<th>F/U action required</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Undeterm.</td>
<td>0</td>
<td>0</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>32.7</td>
<td>146</td>
<td>943</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Undeterm.</td>
<td>0</td>
<td>0</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>34.6</td>
<td>46</td>
<td>296</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Undeterm.</td>
<td>0</td>
<td>0</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>32.3</td>
<td>195</td>
<td>1261</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Undeterm.</td>
<td>0</td>
<td>0</td>
<td>✓ ✓</td>
<td></td>
</tr>
</tbody>
</table>

Cutoff 200

If TREC↓ selected, indicate reference gene category 200 Cutoff

Cutoff 5000
Sample CDC Report - Summary of Results

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Sample Code</th>
<th>No F/U</th>
<th>F/U required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TREC NL</td>
<td>TREC ↓</td>
</tr>
<tr>
<td>High Normal</td>
<td>E</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Low Normal</td>
<td>A</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>SCID -like</td>
<td>F</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Leuko-depleted</td>
<td>B</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CB-cal 5 (12.5%)</td>
<td>C</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>CB-cal 6 (6.3%)</td>
<td>H</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>CB-cal 7 (3.1%)</td>
<td>D</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>
Cumulative PT Results from 17 MPES Sample Panels

<table>
<thead>
<tr>
<th>Reference Gene</th>
<th>Below Cutoff</th>
<th>Above Cutoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-Up Required</td>
<td>158/158 (100%)</td>
<td>136/136 (100%)</td>
</tr>
<tr>
<td>No Follow-Up Required</td>
<td>431/438 (99%)</td>
<td></td>
</tr>
</tbody>
</table>
NSQAP TREC Assay PT Program

- Currently restricts enrollment to domestic laboratories performing routine population-based SCID screening
- Quarterly panel of five DBS samples
- Report categorical results (f/u required or not required) only
- 10 labs currently enrolled
TREC Model Performance Evaluation Survey Program (MPES)

Data harmonization for result comparison

Development of consensus cell-based calibrators currently underway
Discussion

- Despite differences in assay format and reagents, all participating laboratories consistently identified samples with SCID-like phenotype correctly.
- Results on the cord blood dilution series indicated good agreement on F/U requirement for samples across a full range of TREC levels, even as the absolute TREC copy numbers detected vary among laboratories.
- UCSF / MA NBS program has developed a TREC-transfected B-cell line currently under evaluation.
- Consensus calibration for TREC in DBS will evolve quickly and may be achieved in the near future.
Acknowledgements

CDC Newborn Screening Translational Research Initiative (NSTRI)

Wisconsin Newborn Screening Program
New England Newborn Screening Program
University of California, San Francisco; Dept. Pediatrics
Perkin Elmer Genetics
California Genetic Diseases Screening Program
Perkin Elmer Diagnostic (Wallac Oy Reagents)
New York State Newborn Screening Program
National Taiwan Univ. Hosp. Dept. Med. Genetics
Minnesota Newborn Screening Program
Texas Dept State Health Services Newborn Screening Unit
Michigan Newborn Screening Laboratory
Connecticut Dept. Public Health Laboratory
Delaware Newborn Screening Laboratory

Robert Vogt Golriz Yazdanpanah
Jennifer Taylor

Mei Baker
Anne Comeau Jacalyn Thompson
Jennifer Puck Diana Gonzales
Zhili Lin Jessica Ravenscroft
Fred Lorey Constantino Aznar
Alice Ylikoski Tiina Lahde
Michele Caggana Jason Isabelle
Yin-Hsiu Chien Wuh-Liang Hwu
Mark McCann Berta Warman
Rachel Lee Susan Tanksley
Heather Wood Kevin Cavanagh
Adrienne Manning
Clover Carlisle

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333
Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348
E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.